964 resultados para Al2O3
Resumo:
The sulphur tolerance and thermal stability of a 2 wt% Ag/gamma-Al2O3 catalyst was investigated for the H-2-promoted SCR of NO, with octane and toluene. The aged catalyst was characterised by XRD and EXAFS analysis. It was found that the effect of ageing was a function of the gas mix and temperature of ageing. At high temperatures (800 degrees C) the catalyst deactivated regardless of the reaction mix. EXAFS analysis showed that this was associated with the Ag particles on the surface of the catalyst becoming more ordered. At 600 and 700 degrees C, the deactivating effect of ageing was much less pronounced for the catalyst in the H-2-promoted octane-SCR reaction and ageing at 600 degrees C resulted in an enhancement in activity for the reaction in the absence of H-2. For the toluene + H-2-SCR reaction the catalyst deactivated at each ageing temperature. The effect of addition of low levels of sulphur (1 ppm SO2) to the feed was very much dependent on the reaction temperature. There was little deactivation of the catalyst at low temperatures ( 500 degrees C). The results can be explained by the activity of the catalyst for the oxidation Of SO2 to SO3 and the relative stability of silver and aluminium sulphates. The catalyst could be almost fully regenerated by a combination of heating and the presence of hydrogen in the regeneration mix. The catalyst could not be regenerated in the absence of hydrogen. (c) 2006 Published by Elsevier B.V.
Resumo:
Research is progressing fast in the field of the hydrogen assisted hydrocarbon selective catalytic reduction (HC-SCR) over Ag-based catalysts: this paper is a review of the work to date in this area. The addition of hydrogen to the HC-SCR reaction feed over Ag/Al2O3 results in a remarkable improvement in NO (x) conversion using a variety of different hydrocarbon feeds. There is some debate concerning the role that hydrogen has to play in the reaction mechanism and its effect on the form of Ag present during the reaction. Many of the studies use in situ UV-Vis spectroscopy to monitor the form of Ag in the catalyst and appear to indicate that the addition of hydrogen promotes the formation of small Ag clusters which are highly reactive for NO (x) conversion. However, some authors have expressed concern about the use of this technique for these materials and further work is required to address these issues before this technique can be used to give an accurate assessment of the state of Ag during the SCR reaction. A study using in situ EXAFS to probe the H-2 assisted octane-SCR reaction has shown that small Ag particles (containing on average 3 silver atoms) are formed during the SCR reaction but that the addition of H-2 to the feed does not result in any further change in the Ag particle size. This points to the direct involvement of H-2 in the reaction mechanism. Clearly the addition of hydrogen results in a large increase in the number and variety of adsorbed species on the surface of the catalyst during the reaction. Some authors have suggested that conversion of cyanide to isocyanate is the rate-determining step and that hydrogen promotes this conversion. Others have suggested that hydrogen reduces nitrates to more reactive nitrite species which can then activate the hydrocarbon; activation of the hydrocarbon to form acetates has been proposed as the key step. It is probable that all these promotional effects can take place and that it very much depends on the reaction temperature and feed conditions as to which one is most important.
Resumo:
The mechanism of the hydrogenation/hydrogenolysis of dinitrodiphenyldisulfides using sulfided NiMo/ gamma Al2O3 catalysts has been examined in detail. Although two routes are possible, the major pathway involves an initial S-S bond cleavage followed by reduction of the nitro group. Importantly, the disulfide hydrogenolysis occurs in the absence of the catalyst with the role of the catalyst thought to be to activate the hydrogen and trap the cleaved intermediate as well as facilitate the reduction of the nitro group. Monitoring the mass balance throughout the reaction demonstrates the difficulty in measuring intrinsic kinetics for gas-liquid-solid reactions. Although the mass balance is restored at the end of the reaction, up to 45% of the substrate/products is found to be adsorbed on the catalyst during the reaction. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The effect of SO2 on Pd-based catalysts for the combustion of methane has been investigated. It is shown that while SO2 poisons Al2O3- and SiO2-supported catalysts. pre-treatment of Pd/ZrO2 by SO2 enhances the activity substantially.