995 resultados para Air Sampling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, various efforts have been made in air traffic control (ATC) to maintain traffic safety and efficiency in the face of increasing air traffic demands. ATC is a complex process that depends to a large degree on human capabilities, and so understanding how controllers carry out their tasks is an important issue in the design and development of ATC systems. In particular, the human factor is considered to be a serious problem in ATC safety and has been identified as a causal factor in both major and minor incidents. There is, therefore, a need to analyse the mechanisms by which errors occur due to complex factors and to develop systems that can deal with these errors. From the cognitive process perspective, it is essential that system developers have an understanding of the more complex working processes that involve the cooperative work of multiple controllers. Distributed cognition is a methodological framework for analysing cognitive processes that span multiple actors mediated by technology. In this research, we attempt to analyse and model interactions that take place in en route ATC systems based on distributed cognition. We examine the functional problems in an ATC system from a human factors perspective, and conclude by identifying certain measures by which to address these problems. This research focuses on the analysis of air traffic controllers' tasks for en route ATC and modelling controllers' cognitive processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Consideration is given to a standard CDMA system and determination of the density function of the interference with and without Gaussian noise using sampling theory concepts. The formula derived provides fast and accurate results and is a simple, useful alternative to other methods

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An ozonesonde profile over the Network for Detection of Stratospheric Change (NDSC) site at Lauder (45.0° S, 169.7° E), New Zealand, for 24 December 1998 showed atypically low ozone centered around 24 km altitude (600 K potential temperature). The origin of the anomaly is explained using reverse domain filling (RDF) calculations combined with a PV/O3 fitting technique applied to ozone measurements from the Polar Ozone and Aerosol Measurement (POAM) III instrument. The RDF calculations for two isentropic surfaces, 550 and 600 K, show that ozone-poor air from the Antarctic polar vortex reached New Zealand on 24–26 December 1998. The vortex air on the 550 K isentrope originated in the ozone hole region, unlike the air on 600 K where low ozone values were caused by dynamical effects. High-resolution ozone maps were generated, and their examination shows that a vortex remnant situated above New Zealand was the cause of the altered ozone profile on 24 December. The maps also illustrate mixing of the vortex filaments into southern midlatitudes, whereby the overall mid-latitude ozone levels were decreased.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relative contribution of the main mechanisms that control indoor air quality in residential flats was examined. Indoor and outdoor concentration measurements of different type pollutants (black carbon, SO2, O3, NO, NO2,) were monitored in three naturally ventilated residential flats in Athens, Greece. At each apartment, experiments were conducted during the cold as well as during the warm period of the year. The controlling parameters of transport and deposition mechanisms were calculated from the experimental data. Deposition rates of the same pollutant differ according to the site (different construction characteristics) and to the measuring period for the same site (variations in relative humidity and differences in furnishing). Differences in the black carbon deposition rates were attributed to different black carbon size distributions. The highest deposition rates were observed for O3 in the residential flats with the older construction and the highest humidity levels. The calculated parameters as well as the measured outdoor concentrations were used as input data of a one-compartment indoor air quality model, and the indoor concentrations, the production, and loss rates of the different pollutants were calculated. The model calculated concentrations are in good agreement with the measured values. Model simulations revealed that the mechanism that mainly affected the change rate of indoor black carbon concentrations was the transport from the outdoor environment, while the removal due to deposition was insignificant. During model simulations, it was also established that that the change rate of SO2 concentrations was governed by the interaction between the transport and the deposition mechanisms while NOX concentrations were mainly controlled through photochemical reactions and the transport from outdoors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal of this paper is to study and further develop the orthogonality sampling or stationary waves algorithm for the detection of the location and shape of objects from the far field pattern of scattered waves in electromagnetics or acoustics. Orthogonality sampling can be seen as a special beam forming algorithm with some links to the point source method and to the linear sampling method. The basic idea of orthogonality sampling is to sample the space under consideration by calculating scalar products of the measured far field pattern , with a test function for all y in a subset Q of the space , m = 2, 3. The way in which this is carried out is important to extract the information which the scattered fields contain. The theoretical foundation of orthogonality sampling is only partly resolved, and the goal of this work is to initiate further research by numerical demonstration of the high potential of the approach. We implement the method for a two-dimensional setting for the Helmholtz equation, which represents electromagnetic scattering when the setup is independent of the third coordinate. We show reconstructions of the location and shape of objects from measurements of the scattered field for one or several directions of incidence and one or many frequencies or wave numbers, respectively. In particular, we visualize the indicator function both with the Dirichlet and Neumann boundary condition and for complicated inhomogeneous media.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three-dimensional computational simulations are performed to examine indoor environment and micro-environment around human bodies in an office in terms of thermal environment and air quality. In this study, personal displacement ventilation (PDV), including two cases with all seats taken and two middle seats taken, is compared with overall displacement ventilation (ODV) of all seats taken under the condition that supply temperature is 24℃ and air change rate is 60 l/s per workstation. When using PDV, temperature stratification, the characteristic of displacement ventilation, is obviously observed at the position of occupant’s head and clearer in the case with all seats taken. Verticalertical ertical temperature temperature temperature temperature temperature differences below height of the head areare under under under 2℃ in two cases in two cases in two cases in two cases in two cases in two cases in two cases in two cases with all seats taken,and the temperature with PDV is higher than that with ODV. Verticalertical ertical temperature temperature temperature temperature temperature temperature difference is under 3 under 3under 3 under 3℃ in the case in the case in the case in the case in the case in the case in the case with two middle seats taken. CO2 concentration is lower th is lower th is lower this lower this lower than 2 g/man 2 g/m an 2 g/man 2 g/man 2 g/man 2 g/m 3 in the breath zone. in the breath zone. in the breath zone. in the breath zone. in the breath zone. in the breath zone. in the breath zone. in the breath zone. in the breath zone. The results indicate that PDV can be used in the room with big change of occupants’ number to satisfy the need of thermal comfort and air quality. When not all seats are taken, designers should increase supply air requirement or reduce its temperature for thermal comfort. INDEX TERMS

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Direct outdoor air cooling contributes a lot not only to the improvement of the indoor air quality but also to the energy saving. Its full use will reduce the water chiller’s running time especially in some stores where cooling load keeps much higher and longer than that in other buildings. A novel air-conditioning system named Combined Variable Air Volume system (CVAV), combining a normal AHU with a separate outdoor air supply system, was proposed firstly by the authors. The most attractive feature of the system is its full utilization of cooling capacity and freshness of outdoor air in the transition period of the year round. On the basis of the obtain of the dynamic cooling loads of the typical shopping malls in different four cities located in cold climates in China with the aid of DOE-2, the possibility of increasing the amount of outdoor air volume of CVAV system in the transition period instead of operating the water chillers was confirmed. Moreover, a new concept, Direct Outdoor Air Cooling Efficiency (DOACE), was defined as the ratio of cooling capacity of outdoor air to the water chiller, indicating the degree of outdoor air’s utilization. And the DOACE of the CVAV was calculated and compared with that of conventional all-air constant volume air-conditioning systems, the results showed that CVAV bear much more energy saving potential with the 10%~19% higher DOACE and it is a kind of energy efficient systems and can improve the indoor air quality as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The type and thickness of insulation on the topside horizontal of cold pitched roofs has a significant role in controlling air movement, energy conservation and moisture transfer reduction through the ceiling to the loft (roof void) space. To investigate its importance, a numerical model using a HAM software package on a Matlab platform with a Simulink simulation tool has been developed using insitu measurements of airflows from the dwelling space through the ceiling to the loft of three houses of different configurations and loft space. Considering typical UK roof underlay (i.e. bituminous felt and a vapour permeable underlay), insitu measurements of the 3 houses were tested using a calibrated passive sampling technique. Using the measured airflows, the effect of air movement on three types of roof insulation (i.e. fibreglass, cellulose and foam) was modelled to investigate associated energy losses and moisture transport. The thickness of the insulation materials were varied but the ceiling airtightness and eaves gap size were kept constant. These instances were considered in order to visualize the effects of the changing parameters. In addition, two different roof underlays of varying resistances were considered and compared to access the influence of the underlay, if any, on energy conservation. The comparison of these insulation materials in relation to the other parameters showed that the type of insulation material and thickness, contributes significantly to energy conservation and moisture transfer reduction through the roof and hence of the building as a whole.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rat ileal air interface and submerged explant models were developed and used to compare the adhesion of Salmonella enterica var Enteritidis wild-type strains with that of their isogenic single and multiple deletion mutants. The modified strains studied were defective for fimbriae, flagella, motility or chemotaxis and binding was assessed on tissues with and without an intact mucus layer. A multiple afimbriate/aflagellate (fim(-)/fla(-)) strain, a fimbriate but aflagellate (fla(-)) strain and a fimbriate/flagellate but non-motile (mot(-)) strain bound significantly less extensively to the explants than the corresponding wild-type strains. With the submerged explant model this difference was evident in tissues with or without a mucus layer, whereas in the air interface model it was observed only in tissues,vith an intact mucus layer. A smooth swimming chemotaxis-defective (che(-)) strain and single or multiple afimbriate strains bound to explants as well as their corresponding wild-type strain. This suggests that under the present experimental conditions fimbriae were not essential for attachment of S. enterica var Enteritidis to rat ileal explants, However; the possession of active flagella did appear to be an important factor. in enabling salmonellae to penetrate the gastrointestinal mucus layer and attach specifically to epithelial cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Local, tacit and normally unspoken OHS (occupational health and safety) knowledge and practices can too easily be excluded from or remain below the industry horizon of notice, meaning that they remain unaccounted for in formal OHS policy and practice. In this article we stress the need to more systematically and routinely tap into these otherwise ‘hidden’ communication channels, which are central to how everyday safe working practices are achieved. To demonstrate this approach this paper will draw on our ethnographic research with a gang of migrant curtain wall installers on a large office development project in the north of England. In doing so we reflect on the practice-based nature of learning and sharing OHS knowledge through examples of how workers’ own patterns of successful communication help avoid health and safety problems. These understandings, we argue, can be advanced as a basis for the development of improved OHS measures, and of organizational knowing and learning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work investigated the personal exposure to indoor particulate matters using the intake fraction metric and provided a possible way to trace the particle inhaled from an indoor particle source. A turbulence model validated by the particle measurements in a room with underfloor air distribution (UFAD) system was used to predict the indoor particle concentrations. Inhalation intake fraction of indoor particles was defined and evaluated in two rooms equipped with the UFAD, i.e., the experimental room and a small office. According to the exposure characteristics and a typical respiratory rate, the intake fraction was determined in two rooms with a continuous and episodic (human cough) source of particles, respectively. The findings showed that the well-mixing assumption of indoor air failed to give an accurate estimation of inhalation exposure and the average concentration at return outlet or within the overall room could not relate well the intake fraction to the amount of particle emitted from an indoor source.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to evaluate the future potential benefits of emission regulation on regional air quality, while taking into account the effects of climate change, off-line air quality projection simulations are driven using weather forcing taken from regional climate models. These regional models are themselves driven by simulations carried out using global climate models (GCM) and economical scenarios. Uncertainties and biases in climate models introduce an additional “climate modeling” source of uncertainty that is to be added to all other types of uncertainties in air quality modeling for policy evaluation. In this article we evaluate the changes in air quality-related weather variables induced by replacing reanalyses-forced by GCM-forced regional climate simulations. As an example we use GCM simulations carried out in the framework of the ERA-interim programme and of the CMIP5 project using the Institut Pierre-Simon Laplace climate model (IPSLcm), driving regional simulations performed in the framework of the EURO-CORDEX programme. In summer, we found compensating deficiencies acting on photochemistry: an overestimation by GCM-driven weather due to a positive bias in short-wave radiation, a negative bias in wind speed, too many stagnant episodes, and a negative temperature bias. In winter, air quality is mostly driven by dispersion, and we could not identify significant differences in either wind or planetary boundary layer height statistics between GCM-driven and reanalyses-driven regional simulations. However, precipitation appears largely overestimated in GCM-driven simulations, which could significantly affect the simulation of aerosol concentrations. The identification of these biases will help interpreting results of future air quality simulations using these data. Despite these, we conclude that the identified differences should not lead to major difficulties in using GCM-driven regional climate simulations for air quality projections.