1000 resultados para Adsorção. Fosfato de vanadila. Amônia. Óxido de nitrogênio. Sulfeto de hidrogênio


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The seaweed Gracilaria domingensis is a common species in the coast of Rio Grande do Norte. This species lives in the intertidal zone, where colour strains (red, green and brown) co-occur during the whole year. Seaweeds that live in this region are exposed to daily changes and to the rhythm of the tide. During the low tide they are exposed to dissection, hiper-or hipo-osmotic shock, high temperatures and high irradiance. The aim of this study was to analyze whether the pigment and protein content of the colour strains of G. domingensis is affected by some environmental parameters in a temporal scale. The seaweeds were collected during 10 months in the seashore of Rio do Fogo (RN). The total soluble proteins and the phycobiliprotein were extracted in phosphate buffer and the carotenoids were analyzed by a standardized method through HPLC-UV. The pigments analysis showed that phycoerithrin is the most abundant pigment in the three strains. This pigment was strongly correlated with nitrogen and the photosynthetically active radiation. Chlorophyll presented higher concentrations than carotenoids during the whole, but the ratio carotenoid/chlorophyll-a was modified by incident radiation. The most abundant carotenoid was ß-carotene and zeaxanthin, which had higher concentrations in the higher radiation months. The concentration increase of zeaxanthin in this period indicated a photoprotective response of the seaweed. The three strains presented a pigment profile that indicates different radiation tolerance profile. Our results pointed that the green strain is better adapted to high irradiance levels than the red and brown strains

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mobilization of food reserves in storage tissues and allocation of their hydrolysis products in the growing axis are critical processes for the establishment of seedlings after germination. Therefore, it is crucial for mobilization of reserves to be synchronized with the growing axis, so that photosynthetic activity can be started before depletion of reserves. For this, integrative approaches involving different reserves, different hydrolysis products and interaction between storage and growing axis tissues, either through hormones or metabolites with signaling role, can contribute greatly to the elucidation of the regulation mechanisms for reserve mobilization. In this study, was hypothesized that hormones and metabolites have different actions on reserve mobilization, and there must be a crossed effect of sugars on the mobilization of proteins and amino acids on lipids and starch mobilization in sunflower seedlings. This study was conducted with seeds of sunflower (Helianthus annuus L.) hybrid Helio 253 using in vitro culture system. Seeds were germinated on Germitest® paper and grown on agar-water 4 g/L without addition of nutrients during 9 days after imbibition (DAI) for growth curve. To verify the effect of metabolites and hormones, seedlings were transferred in the 2nd DAI to agar-water 4 g/L supplemented with increasing concentrations of sucrose or L-glutamine, abscisic acid, gibberellic acid or indolebutyric acid. The results of this study confirm that the mobilization of lipids and storage proteins occurs in a coordinated manner during post-germination growth in sunflower, corroborating the hypothesis that the application of external carbon (sucrose) and nitrogen (L-glutamine) sources can delay the mobilization of these reserves in a crossed way. Moreover, considering the changes in the patterns of reserve mobilization and partition of their products in seedlings treated with different growth regulators, it is evident that the effects of metabolites and hormones must involve, at least in part, distinct mechanisms of action

Relevância:

20.00% 20.00%

Publicador:

Resumo:

he present model of agriculture is based on intensive use of industrial inputs, due to its rapid response, but it brings harmful consequences to the environment, and it is necessary the use of modern inputs. And an alternative is the use of rock biofertilizers in agriculture, a product easy to use, with higher residual effect and does not harm the environment. The objective of study was to evaluate the inoculation and co-inoculation of different microorganisms in the solubilization of rock phosphate and potash ground microbial evaluating the best performance in the production of biofertilizers comparing with rocks pure in soil chemical properties and, verify effect of inoculation of the bacterium Paenibacillus polymyxa in the absorption of minerals dissolved in the development of cowpea (Vigna unguiculata [L.] Walp.). The first bioassay was conducted in Laboratory (UFRN) for 72 days in Petri dishes, where the rock powder was increased by 10% and sulfur co-inoculated and inoculated with bacterial suspension of Paenibacillus polymyxa grown in medium tryptone soy broth, Ralstonia solanacearum in medium Kelman, Cromobacterium violaceum in medium Luria-Bertani and Acidithiobacillus thiooxidans in medium Tuovinen and Kelly,and fungi Trichoderma humatum and Penicillium fellutanum in malt extract. Every 12 days, samples were removed in order to build up the release curve of minerals. The second bioassay was conducted in a greenhouse of the Agricultural Research Corporation of Rio Grande do Norte in experimental delineation in randomized block designs, was used 10 kg of an Yellow Argissolo Dystrophic per pot with the addition of treatments super phosphate simple (SS), potassium chloride (KCl), pure rock, biofertilizers in doses 40, 70, 100 and 200% of the recommendation for SS and KCl, and a control, or not inoculated with bacteria P. polymyxa. Were used seeds of cowpea BRS Potiguar and co-inoculated with the bacterial suspension of Bradyrhizobium japonicum and P. polymyxa. The first crop was harvested 45 days after planting, were evaluated in the dry matter (ADM), macronutrients (N, P, K, Ca, Mg) and micronutrients (Zn, Fe, Mn) in ADM. And the second at 75 days assessing levels of macro end micronutrients in plants and soil, and the maximum adsorption capacity of P in soil. The results showed synergism in co-inoculations with P. polymyxa+R. solanacearum and, P. polymyxa+C. violaceum solubilizations providing higher P and K, respectively, and better solubilization time at 36 days. The pH was lower in biofertilizers higher doses, but there was better with their addition to P at the highest dose. Significant reduction of maximum adsorption capacity of phosphorus with increasing dose of biofertilizer. For K and Ca was better with SS+KCl, and Mg to pure rock. There was an effect of fertilization on the absorption, with better results for P, K and ADM with SS+KCL, and N, Ca and Mg for biofertilizers. Generally, the P. polymyxa not influence the absorption of the elements in the plant. In treatments with the uninoculated P. polymyxa chemical fertilizer had an average significantly higher for weight and number of grains. And in the presence of the bacteria, biofertilizers and chemical fertilizers had positive values in relation to rock and control. The data show that the rocks and biofertilizers could meet the need of nutrients the plants revealed as potential for sustainable agriculture

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The natural gas is an alternative source of energy which is found underground in porous and permeable rocks and being associated or not to the oil. Its basic composition includes methane, other hydrocarbon and compounds such as carbon dioxide, nitrogen, sulphidric gas, mercaptans, water and solid particles. In this work, the dolomite mineral, a double carbonate of calcium and magnesium whose the chemical formula is CaMg(CO3)2, was evaluated as adsorbent material. The material was characterized by granulometric analysis, X-ray fluorescence, X-ray diffraction, thermogravimetric analysis, differential thermal analysis, specific surface area, porosity, scanning electronic microscopy and infrared spectroscopy. Then the material was functionalized with diethanolamine (dolomite+diethanolamine) and diisopropylamine (dolomite+diisopropylamine). The results indicated that the adsorbents presented appropriate physiochemical characteristics for H2S adsorption. The adsorption tests were accomplished in a system coupled to a gas chromatograph and the H2S monitoring in the output of the system was accomplished by a pulsed flame photometric detector (PFPD). The adsorbents presented a significant adsorption capacity. Among the analyzed adsorbents, the dolomite+diethanolamine presented the best capacity of adsorption. The breakthrough curves obtained proved the efficiency of this process

Relevância:

20.00% 20.00%

Publicador:

Resumo:

heterogeneous catalyst such as a silicoaluminophosphate, molecular sieve with AEL (Aluminophosphate eleven) structure such as SAPO-11, was synthesized through the hydrothermal method starting from silica, pseudoboehmite, orthophosphoric acid (85%) and water, in the presence of a di-isopropylamine organic template. For the preparation of SAPO-11 in a dry basis it was used as reactants: DIPA; H3PO4; SiO4; Pseudoboehmite and distilled water. The crystallization process occurred when the reactive hydrogel was charged into a vessel and autoclaved at 200ºC for a period of 72 hours under autogeneous pressure. The obtained material was washed, dried and calcined to remove the molecular sieves of DIPA. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), infrared spectroscopy (FT-IR), nitrogen adsorption (BET) and thermal analysis (TG/DTG). The acidic properties were determined using adsorption of nbutylamine followed by programmed thermodessorption. This method revealed that SAPO-11 shows an acidity that ranges from weak to moderate. However, a small quantity of strong acid sites could be detected there. The deactivation of the catalysts was conducted by artificial coking followed by the cracking of the n-hexane in a fixed bed with a continuous flow micro-reactor coupled on line to a gas chromatograph. The main products obtained were: ethane, propane, isobutene, n-butane, n-pentane and isopentane. The Vyazovkin (model-free) kinetics method was used to determine the regeneration and removal of the coke

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The destructive impact of improper disposal of heavy metals in the environment increases as a direct result of population explosion, urbanization and industrial expansion and technological developments. Argil are potential materials for adsorption of inorganic and the pelletization of it is required for use in adsorptive columns of fixed bed. The low cost and the possibility of regeneration makes these materials attractive for use in the purification process, capable of removing inorganic compounds in contaminated aquatic environments. In this work was made pellets of a mixture of dolomite and montmorillonite by wet agglomeration, in different percentages. The removal of Pb (II) was investigated through experimental studies, and was modeled by kinetic models and isotherms of adsorption. The materials were characterized using the techniques of XRD, TG / DTA, FT-IR, and surface area by BET method. The results showed the adsorption efficiency of the contaminant by the composite material studied in synthetic solution. The study found that the adsorption follows the Langmuir model, and the kinetics of adsorption follows the model of pseudosecond order

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mixed metal oxides constitute an important class of catalytic materials widely investigated in different fields of applications. Studies of rare earth nickelates have been carried by several researchers in order to investigate the structural stability afforded by oxide formed and the existence of catalytic properties at room temperature. So, this study aims synthesize the nanosized catalyst of nickelate of lanthanum doped with strontium (La(1-x)SrxNiO4-d; x = 0,2 and 0,3), through the Pechini method and your characterization for subsequent application in the desulfurization of thiophene reaction. The precursor solutions were calcined at 300ºC/2h for pyrolysis of polyester and later calcinations occurred at temperatures of 500 - 1000°C. The resulting powders were characterized by thermogravimetric analysis (TG / DTG), surface area for adsorption of N2 by BET method, X-ray diffraction (XRD), scanning electron microscopy (HR_SEM) and spectrometry dispersive energy (EDS). The results of XRD had show that the perovskites obtained consist of two phases (LSN and NiO) and from 700ºC have crystalline structure. The results of SEM evidenced the obtainment of nanometric powders. The results of BET show that the powders have surface area within the range used in catalysis (5-50m2/g). The characterization of active sites was performed by reaction of desulfurization of thiophene at room temperature and 200ºC, the relation F/W equal to 0,7 mol h-1mcat -1. The products of the reaction were separated by gas chromatography and identified by the selective detection PFPD sulfur. All samples had presented conversion above 95%

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The research and development of nanostructured materials have been growing significantly in the last years. These materials have properties that were significantly modified as compared to conventional materials due to the extremely small dimensions of the crystallites. The tantalum carbide (TaC) is an extremely hard material that has high hardness, high melting point, high chemical stability, good resistance to chemical attack and thermal shock and excellent resistance to oxidation and corrosion. The Compounds of Tantalum impregnated with copper also have excellent dielectric and magnetic properties. Therefore, this study aimed to obtain TaC and mixed tantalum oxide and nanostructured copper from the precursor of tris (oxalate) hydrate ammonium oxitantalato, through gas-solid reaction and solid-solid respectively at low temperature (1000 ° C) and short reaction time. The materials obtained were characterized by X-ray diffraction (XRD), Rietveld refinement, Scanning Electron Microscopy (SEM), Spectroscopy X-Ray Fluorescence (XRF), infrared spectroscopy (IR), thermogravimetric (TG), thermal analysis (DTA) and BET. Through the XRD analyses and the Reitiveld refinement of the TaC with S = 1.1584, we observed the formation of pure tantalum carbide and cubic structure with average crystallite size on the order of 12.5 nanometers. From the synthesis made of mixed oxide of tantalum and copper were formed two distinct phases: CuTa10O26 and Ta2O5, although the latter has been formed in lesser amounts

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alternative and clean energy generation research has been intensified in last decades. Among the alternatives, fuel cells are one of the most important. There are different types of fuel cells, among which stands out intermediate temperature solid oxide fuel cell (IT-SOFC) matter of the present work. For application as cathode on this type of devices, the ceramic Ba0.5Sr0.5C0.8Fe0.2O3-δ doped with rare earth ions (Nd, Sm) have been quite promising because they show good ionic conductivity and operate at relatively low temperatures (500 - 800°C). In this work, Ba0.5Sr0.5Co0.8Fe0.2O3-δ, (BaSr)0.5Sm0.5Co0.8Fe0.2O3-δ and (BaSr)0.5Nd0.5C0.8Fe0.2O3-δ were obtained by modified Pechini method, making use of gelatin as polymerizing agent. The powders were characterized by X-Ray Diffraction (XRD), Temperature Programmed Reduction (TPR) and Scanning Electron Microscopy (SEM). The perovskite phase was observed in all X-ray patterns for the materials Ba0.5Sr0.5C0.8Fe0.2O3-δ doped with rare earth ions (Nd, Sm). The SEM images showed that the materials have a characteristics porous, with very uniform pore distribution, which are favorable for application as cathodes. Subsequently, screen-printed assymmetrical cells were studied by impedance spectroscopy, to assess the kinetics of the cathode for the reduction reaction of oxygen. The best resistance to the specific area was found for the cathode BSSCF sintered at 1050 °C for 4 hours with around 0.15 Ω.cm2 at 750 °C as well as cathodes BSNCF and BSCF obtained resistances specific area of 0.2 and 0.73 Ω.cm2, respectively, for the same conditions. The polarization curves showed similar behavior to the best cathodes BSSCF and BSNCF, such combination of properties indicates that the film potentially depict good performance as IT-SOFC cathodes

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, the area of advanced materials has been considerably, especially when it comes to materials for industrial use, such as is the case with structured porosity of catalysts suitable for catalytic processes. The use of catalysts combined with the fast pyrolysis process is an alternative to the oxygenate production of high added value, because, in addition to increasing the yield and quality of products, allows you to manipulate the selectivity to a product of interest, and therefore allows greater control over the characteristics of the final product. Based on these arguments, in this work were prepared titanium catalysts supported on MCM-41 for use in catalytic pyrolysis of biomass, called elephant grass. The reactions of pyrolysis of biomass were performed in a micro pyrolyzer, Py-5200, coupled to GC / MS, the company CDS Corporation, headquartered in the United States. The catalysts Ti-MCM-41 in different molar ratios were characterized by XRD, TG / DTG, FT-IR, SEM, XRF, UV-visible adsorption of nitrogen and the distribution of particle diameter and specific surface area measurement by the BET method. From the catalytic tests it was observed that the catalysts synthesized showed good results for the pyrolysis reaction.The main products were obtained a higher yield of aldehydes, ketones and furan. It was observed that the best reactivity is a direct function of the ratio Si/Ti, nature and concentration of the active species on mesoporous supports. Among the catalysts Ti-MCM-41 (molar ratio Si / Ti = 25 and 50), the ratio Si / Ti = 25 (400 ° C and 600 ° C) favored the cracking of oxygenates such as acids , aldehydes, ketones, furans and esters. Already the sample ratio Si / Ti = 50 had the highest yield of aromatic oxygenates

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work was used a plasma torch of non transferred arc with argon as work gas, using a power supply with maximum DC current of 250 A and voltage of 30 V to activate the plasma and keep it switched on. The flame temperature was characterized by optical emission spectroscopy, through Boltzmann-plot-method. The torch has been used like igniter in the aluminothermic reduction of the mixture tantalum oxide and aluminum, seeking to obtain metallic tantalum. In heating of the reagents only one particle will be considered to study interactions between plasma-particle, seeking to determinate its fusion and residence time. The early powders were characterized by laser granulometry, scanning electron microscopy (SEM) and X-ray diffraction analysis. The final product of this reaction was characterized by SEM and X-ray diffraction. Crystallite size was calculated by the Scherrer equation and microdeformation was determined using Willamsom-Hall graph. With Rietveld method was possible to quantify the percentile in weight of the products obtained in the aluminothermic reaction. Semi-quantitative chemical analysis (EDS) confirmed the presence of metallic tantalum and Al2O3 as products of the reduction. As was waited the particle size of the metallic tantalum produced, presents values in nanometric scale due the short cooling time of those particles during the process

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Currently, due to part of world is focalized to petroleum, many researches with this theme have been advanced to make possible the production into reservoirs which were classified as unviable. Because of geological and operational challenges presented to oil recovery, more and more efficient methods which are economically successful have been searched. In this background, steam flood is in evidence mainly when it is combined with other procedures to purpose low costs and high recovery factors. This work utilized nitrogen as an alternative fluid after steam flood to adjust the best combination of alternation between these fluids in terms of time and rate injection. To describe the simplified economic profile, many analysis based on liquid cumulative production were performed. The completion interval and injection fluid rates were fixed and the oil viscosity was ranged at 300 cP, 1.000 cP and 3.000 cP. The results defined, for each viscosity, one specific model indicating the best period to stop the introduction of steam and insertion of nitrogen, when the first injected fluid reached its economic limit. Simulations in physics model defined from one-eighth nine-spot inverted were realized using the commercial simulator Steam, Thermal and Advanced Processes Reservoir Simulator STARS of Computer Modelling Group CMG

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biodiesel is an alternative fuel, renewable, biodegradable and nontoxic. The transesterification of vegetable oils or animal fat with alcohol is most common form of production of this fuel. The procedure for production of biodiesel occurs most commonly through the transesterification reaction in which catalysts are used to accelerate and increase their income and may be basic, acid or enzyme. The use of homogeneous catalysis requires specific conditions and purification steps of the reaction products (alkyl ester and glycerol) and removal of the catalyst at the end of the reaction. As an alternative to improve the yield of the transesterification reaction, minimize the cost of production is that many studies are being conducted with the application of heterogeneous catalysis. The use of nano-structured materials as catalysts in the production of biodiesel is a biofuel alternative for a similar to mineral diesel. Although slower, can esterify transesterified triglycerides and free fatty acids and suffer little influence of water, which may be present in the raw material. This study aimed at the synthesis, characterization and application of nano-structured materials as catalysts in the transesterification reaction of soybean oil to produce biodiesel by ethylic route. The type material containing SBA-15 mesoporous lanthanum embedded within rightly Si / La = 50 was used catalyst. Solid samples were characterized by X-ray diffraction, thermogravimetric analysis, infrared spectroscopy, nitrogen adsorption and desorption. For the transesterification process, we used a molar ratio of 20:1 alcohol and oil with 0.250 g of catalyst at 60°C and times of 6 hours of reaction. It was determined the content of ethyl esters by H-NMR analysis and gas chromatography. It was found that the variable of conversion obtained was 80%, showing a good catalytic activity LaSBA-15 in the transesterification of vegetable oils via ethylic route

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Currently, the oil industry is the biggest cause of environmental pollution. The objective was to reduce the concentration of copper and chromium in the water produced by the oil industry. It was used as adsorbent natural sisal fiber Agave sp treated with nitric acid and sodium hydroxide. All vegetable fibers have physical and morphological properties that enablies the adsorption of pollutants. The basic composition of sisal is cellulose, hemicellulose and lignin. The features are typically found in the characterization of vegetable fibers, except the surface area that was practically zero. In the first stage of adsorption, it was evaluated the effect of temperature and time skeeking to optimize the execution of the factorial design. The results showed that the most feasible fiber was the one treated with acid in five hours (30°C). The second phase was a factorial design, using acid and five hours, this time was it determined in the first phase. The tests were conducted following the experimental design and the results were analyzed by statistical methods in order to optimize the main parameters that influence the process: pH, concentration (mol / L) and fiber mass/ metal solution volume. The volume / mass ratio factor showed significant interference in the adsorption process of chromium and copper. The results obtained after optimization showed that the highest percentages of extraction (98%) were obtained on the following operating conditions: pH: 5-6, Concentration: 100 ppm and mass/ volume: 1 gram of fiber/50mL solution. The results showed that the adsorption process was efficient to remove chromium and copper using sisal fibers, however, requiring further studies to optimize the process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of biofuels remotes to the eighteenth century, when Rudolf Diesel made the first trials using peanut oil as fuel in a compression ignition engine. Based on these trials, there was the need for some chemical change to vegetable oil. Among these chemical transformations, we can mention the cracking and transesterification. This work aims at conducting a study using the thermocatalytic and thermal cracking of sunflower oil, using the Al-MCM-41 catalyst. The material type mesoporous Al-MCM-41 was synthesized and characterized by Hydrothermical methods of X-ray diffraction, scanning electron microscopy, nitrogen adsorption, absorption spectroscopy in the infrared and thermal gravimetric analysis (TG / DTG).The study was conducted on the thermogravimetric behavior of sunflower oil on the mesoporous catalyst cited. Activation energy, conversion, and oil degradation as a function of temperature were estimated based on the integral curves of thermogravimetric analysis and the kinetic method of Vyazovkin. The mesoporous material Al-MCM-41 showed one-dimensional hexagonal formation. The study of the kinetic behavior of sunflower oil with the catalyst showed a lower activation energy against the activation energy of pure sunflower oil. Two liquid fractions of sunflower oil were obtained, both in thermal and thermocatalytic pyrolisis. The first fraction obtained was called bio-oil and the second fraction obtained was called acid fraction. The acid fraction collected, in thermal and thermocatalytic pyrolisis, showed very high level of acidity, which is why it was called acid fraction. The first fraction was collected bio-called because it presented results in the range similar to petroleum diesel