977 resultados para Adjustable flow oil pump


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The unsteady rotating flow of a laminar incompressible viscous electrically conducting fluid over a rotating sphere in the vicinity of the equator has been studied. The fluid and the body rotate either in the same direction or in opposite directions. The effects of surface suction and magnetic field have been included in the analysis. There is an initial steady state that is perturbed by a sudden change in the rotational velocity of the sphere, and this causes unsteadiness in the flow field. The nonlinear coupled parabolic partial differential equations governing the boundary-layer flow have been solved numerically by using an implicit finite-difference scheme. For large suction or magnetic field, analytical solutions have also been obtained. The magnitude of the radial, meridional and rotational velocity components is found to be higher when the fluid and the body rotate in opposite directions than when they rotate in the same direction. The surface shear stresses in the meridional and rotational directions change sign when the ratio of the angular velocities of the sphere and the fluid lambda greater than or equal to lambda(0). The final (new) steady state is reached rather quickly which implies that the spin-up time is small. The magnetic field and surface suction reduce the meridional shear stress, but increase the surface shear stress in the rotational direction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new family of castor oil based biodegradable polyesters was synthesized by catalyst free melt condensation reaction between two different diacids and castor oil with D-mannitol. The polymers synthesized were characterized by NMR spectroscopy, FF-IR and the thermal properties were analysed by DSC. The results of DSC show that the polymer is rubbery in physiological conditions. The contact angle measurement and hydration test results indicate that the surface of the polymer is hydrophilic. The mechanical properties, evaluated in the tensile mode, shows that the polymer has characteristics of a soft material. In vitro degradation of polymer in PBS solution carried out at physiological conditions indicates that the degradation goes to completion within 21 days and it was also found that the rate of degradation can be tuned by varying the curing conditions. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Earlier desinent cavitation studies on a 1/8 caliber ogive by one of the authors (J. W. H.) showed a sudden change in the magnitude of the desinent cavitation number at a critical velocity. In the present work it is shown by means of oil-film flow visualization that below the critical velocity a long laminar separation bubble exists whereas above the critical velocity the laminar separation bubble is short. Thus the desinent cavitation characteristics of a 1/8 caliber ogive are governed by the nature of the viscous flow around the body.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerical modeling of several turbulent nonreacting and reacting spray jets is carried out using a fully stochastic separated flow (FSSF) approach. As is widely used, the carrier-phase is considered in an Eulerian framework, while the dispersed phase is tracked in a Lagrangian framework following the stochastic separated flow (SSF) model. Various interactions between the two phases are taken into account by means of two-way coupling. Spray evaporation is described using a thermal model with an infinite conductivity in the liquid phase. The gas-phase turbulence terms are closed using the k-epsilon model. A novel mixture fraction based approach is used to stochastically model the fluctuating temperature and composition in the gas phase and these are then used to refine the estimates of the heat and mass transfer rates between the droplets and the surrounding gas-phase. In classical SSF (CSSF) methods, stochastic fluctuations of only the gas-phase velocity are modeled. Successful implementation of the FSSF approach to turbulent nonreacting and reacting spray jets is demonstrated. Results are compared against experimental measurements as well as with predictions using the CSSF approach for both nonreacting and reacting spray jets. The FSSF approach shows little difference from the CSSF predictions for nonreacting spray jets but differences are significant for reacting spray jets. In general, the FSSF approach gives good predictions of the flame length and structure but further improvements in modeling may be needed to improve the accuracy of some details of the Predictions. (C) 2011 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current standard security practices do not provide substantial assurance about information flow security: the end-to-end behavior of a computing system. Noninterference is the basic semantical condition used to account for information flow security. In the literature, there are many definitions of noninterference: Non-inference, Separability and so on. Mantel presented a framework of Basic Security Predicates (BSPs) for characterizing the definitions of noninterference in the literature. Model-checking these BSPs for finite state systems was shown to be decidable in [8]. In this paper, we show that verifying these BSPs for the more expressive system model of pushdown systems is undecidable. We also give an example of a simple security property which is undecidable even for finite-state systems: the property is a weak form of non-inference called WNI, which is not expressible in Mantel’s BSP framework.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study presents the characterization of DNAPL and water flow in a fracture under confining pressure. A comprehensive mathematical model and the conditions under which DNAPL will enter an initially water-saturated deforming rock fracture are discussed. A numerical model with which to predict the quantity of each phase in terms of their saturations in deforming rock joint is developed. The effect of varying confining stresses on the traverse time of DNAPL across a fractured aquitard is studied. The sensitivity analysis for physical and hydraulic properties like initial fracture apertures, fracture dips, equivalent fracture aperture and confining pressures are performed and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Linear stability and the nonmodal transient energy growth in compressible plane Couette flow are investigated for two prototype mean flows: (a) the uniform shear flow with constant viscosity, and (b) the nonuniform shear flow with stratified viscosity. Both mean flows are linearly unstable for a range of supersonic Mach numbers (M). For a given M, the critical Reynolds number (Re) is significantly smaller for the uniform shear flow than its nonuniform shear counterpart; for a given Re, the dominant instability (over all streamwise wave numbers, α) of each mean flow belongs to different modes for a range of supersonic M. An analysis of perturbation energy reveals that the instability is primarily caused by an excess transfer of energy from mean flow to perturbations. It is shown that the energy transfer from mean flow occurs close to the moving top wall for “mode I” instability, whereas it occurs in the bulk of the flow domain for “mode II.” For the nonmodal transient growth analysis, it is shown that the maximum temporal amplification of perturbation energy, Gmax, and the corresponding time scale are significantly larger for the uniform shear case compared to those for its nonuniform counterpart. For α=0, the linear stability operator can be partitioned into L∼L̅ +Re2 Lp, and the Re-dependent operator Lp is shown to have a negligibly small contribution to perturbation energy which is responsible for the validity of the well-known quadratic-scaling law in uniform shear flow: G(t∕Re)∼Re2. In contrast, the dominance of Lp is responsible for the invalidity of this scaling law in nonuniform shear flow. An inviscid reduced model, based on Ellingsen-Palm-type solution, has been shown to capture all salient features of transient energy growth of full viscous problem. For both modal and nonmodal instability, it is shown that the viscosity stratification of the underlying mean flow would lead to a delayed transition in compressible Couette flow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CFD investigations are carried out to study the heat flux and temperature distribution in the calandria using a 3–Dimensional RANS code. Internal flow computations and experimental studies are carried out for a calandria embedded with a matrix of tubes working together as a reactor. Numerical investigations are carried on the Calandria reactor vessel with horizontal inlets and outlets located on top and the bottom to study the flow pattern and the associated temperature distribution. The computations have been carried out to simulate fluid flow and convective heat transfer for assigned near–to working conditions with different moderator injection rates and reacting heat fluxes. The results of computations provide an estimate of the tolerance bands for safe working limits for the heat dissipation at different working conditions by virtue of prediction of the hot spots in the calandria. The isothermal CFD results are validated by a set of experiments on a specially designed scaled model conducted over a range of flows and simulation parameters. The comparison of CFD results with experiments show good agreement.