986 resultados para Active oxygen


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laboratory and field studies have shown that the survival of salmonid fish eggs and alevins is dependent upon the supply rate or flux of dissolved oxygen through gravel beds used for spawning. Although there have been a number of studies concerned with North American species there are few data for Atlantic salmon (Salmo salar) and the brown trout (S. trutta). For this study intragravel seepage velocities and dissolved oxygen concentrations have been measured throughout the incubation period in spawning gravels utilized by brown trout (Salmo trutta). Variation in the hatching success of batches of trout and salmon (Salmo salar) can, in part, be attributed to a critical threshold of oxygen flux through the gravels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

I. PHOSPHORESCENCE AND THE TRUE LIFETIME OF TRIPLET STATES IN FLUID SOLUTIONS

Phosphorescence has been observed in a highly purified fluid solution of naphthalene in 3-methylpentane (3-MP). The phosphorescence lifetime of C10H8 in 3-MP at -45 °C was found to be 0.49 ± 0.07 sec, while that of C10D8 under identical conditions is 0.64 ± 0.07 sec. At this temperature 3-MP has the same viscosity (0.65 centipoise) as that of benzene at room temperature. It is believed that even these long lifetimes are dominated by impurity quenching mechanisms. Therefore it seems that the radiationless decay times of the lowest triplet states of simple aromatic hydrocarbons in liquid solutions are sensibly the same as those in the solid phase. A slight dependence of the phosphorescence lifetime on solvent viscosity was observed in the temperature region, -60° to -18°C. This has been attributed to the diffusion-controlled quenching of the triplet state by residual impurity, perhaps oxygen. Bimolecular depopulation of the triplet state was found to be of major importance over a large part of the triplet decay.

The lifetime of triplet C10H8 at room temperature was also measured in highly purified benzene by means of both phosphorescence and triplet-triplet absorption. The lifetime was estimated to be at least ten times shorter than that in 3-MP. This is believed to be due not only to residual impurities in the solvent but also to small amounts of impurities produced through unavoidable irradiation by the excitation source. In agreement with this idea, lifetime shortening caused by intense flashes of light is readily observed. This latter result suggests that experiments employing flash lamp techniques are not suitable for these kinds of studies.

The theory of radiationless transitions, based on Robinson's theory, is briefly outlined. A simple theoretical model which is derived from Fano's autoionization gives identical result.

Il. WHY IS CONDENSED OXYGEN BLUE?

The blue color of oxygen is mostly derived from double transitions. This paper presents a theoretical calculation of the intensity of the double transition (a 1Δg) (a 1Δg)←(X 3Σg-) (X 3Σg-), using a model based on a pair of oxygen molecules at a fixed separation of 3.81 Å. The intensity enhancement is assumed to be derived from the mixing (a 1Δg) (a 1Δg) ~~~ (X 3Σg-) (X 3Σu-) and (a 1Δg) (1Δu) ~~~ (X 3Σg-) (X 3Σg-). Matrix elements for these interactions are calculated using a π-electron approximation for the pair system. Good molecular wavefunctions are used for all but the perturbing (B 3Σu-) state, which is approximated in terms of ground state orbitals. The largest contribution to the matrix elements arises from large intramolecular terms multiplied by intermolecular overlap integrals. The strength of interaction depends not only on the intermolecular separation of the two oxygen molecules, but also as expected on the relative orientation. Matrix elements are calculated for different orientations, and the angular dependence is fit to an analytical expression. The theory therefore not only predicts an intensity dependence on density but also one on phase at constant density. Agreement between theory and available experimental results is satisfactory considering the nature of the approximation, and indicates the essential validity of the overall approach to this interesting intensity enhancement problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the design and characterization of a fiber Fabry-Perot interferometer (FFPI) acoustic wave detector with its Q point being stabilized actively. The relationship between the reflectivity of the F-P cavity facets and cavity length was theoretically analyzed, and high visibility of 100% was realized by optimized design of the F-P cavity. To prevent the drifting of the Q point, a new stabilization method by actively feedback controlling of the diode laser is proposed and demonstrated, indicating the method is simple and easy operating. Measurement shows that good tracing of Q point was effectively realized. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A dissolved oxygen sensor made of plastic optical fiber as the substrate and dichlorotris (1, 10-phenanthroline) ruthenium as a fluorescence indicator is studied. Oxygen quenching characteristics of both intensity and phase were measured; the obtained characteristics showed deviation from the linear relation described by the Stern-Volmer equation. A two-layer model is proposed to explain the deviation, and main parameters can be deduced with the model. (C) 2009 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Steady-state procedures, of their very nature, cannot deal with dynamic situations. Statistical models require extensive calibration, and predictions often have to be made for environmental conditions which are often outside the original calibration conditions. In addition, the calibration requirement makes them difficult to transfer to other lakes. To date, no computer programs have been developed which will successfully predict changes in species of algae. The obvious solution to these limitations is to apply our limnological knowledge to the problem and develop functional models, so reducing the requirement for such rigorous calibration. Reynolds has proposed a model, based on fundamental principles of algal response to environmental events, which has successfully recreated the maximum observed biomass, the timing of events and a fair simulation of the species succession in several lakes. A forerunner of this model was developed jointly with Welsh Water under contract to Messrs. Wallace Evans and Partners, for use in the Cardiff Bay Barrage study. In this paper the authors test a much developed form of this original model against a more complex data-set and, using a simple example, show how it can be applied as an aid in the choice of management strategy for the reduction of problems caused by eutrophication. Some further developments of the model are indicated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Part I

The physical phenomena which will ultimately limit the packing density of planar bipolar and MOS integrated circuits are examined. The maximum packing density is obtained by minimizing the supply voltage and the size of the devices. The minimum size of a bipolar transistor is determined by junction breakdown, punch-through and doping fluctuations. The minimum size of a MOS transistor is determined by gate oxide breakdown and drain-source punch-through. The packing density of fully active bipolar or static non-complementary MOS circuits becomes limited by power dissipation. The packing density of circuits which are not fully active such as read-only memories, becomes limited by the area occupied by the devices, and the frequency is limited by the circuit time constants and by metal migration. The packing density of fully active dynamic or complementary MOS circuits is limited by the area occupied by the devices, and the frequency is limited by power dissipation and metal migration. It is concluded that read-only memories will reach approximately the same performance and packing density with MOS and bipolar technologies, while fully active circuits will reach the highest levels of integration with dynamic MOS or complementary MOS technologies.

Part II

Because the Schottky diode is a one-carrier device, it has both advantages and disadvantages with respect to the junction diode which is a two-carrier device. The advantage is that there are practically no excess minority carriers which must be swept out before the diode blocks current in the reverse direction, i.e. a much faster recovery time. The disadvantage of the Schottky diode is that for a high voltage device it is not possible to use conductivity modulation as in the p i n diode; since charge carriers are of one sign, no charge cancellation can occur and current becomes space charge limited. The Schottky diode design is developed in Section 2 and the characteristics of an optimally designed silicon Schottky diode are summarized in Fig. 9. Design criteria and quantitative comparison of junction and Schottky diodes is given in Table 1 and Fig. 10. Although somewhat approximate, the treatment allows a systematic quantitative comparison of the devices for any given application.

Part III

We interpret measurements of permittivity of perovskite strontium titanate as a function of orientation, temperature, electric field and frequency performed by Dr. Richard Neville. The free energy of the crystal is calculated as a function of polarization. The Curie-Weiss law and the LST relation are verified. A generalized LST relation is used to calculate the permittivity of strontium titanate from zero to optic frequencies. Two active optic modes are important. The lower frequency mode is attributed mainly to motion of the strontium ions with respect to the rest of the lattice, while the higher frequency active mode is attributed to motion of the titanium ions with respect to the oxygen lattice. An anomalous resonance which multi-domain strontium titanate crystals exhibit below 65°K is described and a plausible mechanism which explains the phenomenon is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN] This PhD work started in March 2010 with the support of the University of the Basque Country (UPV/EHU) under the program named “Formación de Personal Investigador” at the Chemical and Environmental Engineering Department in the Faculty of Engineering of Bilbao. The major part of the Thesis work was carried out in the mentioned department, as a member of the Sustainable Process Engineering (SuPrEn) research group. In addition, this PhD Thesis includes the research work developed during a period of 6 months at the Institut für Mikrotechnik Mainz GmbH, IMM, in Germany. During the four years of the Thesis, conventional and microreactor systems were tested for several feedstocks renewable and non-renewable, gases and liquids through several reforming processes in order to produce hydrogen. For this purpose, new catalytic formulations which showed high activity, selectivity and stability were design. As a consequence, the PhD work performed allowed the publication of seven scientific articles in peer-reviewed journals. This PhD Thesis is divided into the following six chapters described below. The opportunity of this work is established on the basis of the transition period needed for moving from a petroleum based energy system to a renewable based new one. Consequently, the present global energy scenario was detailed in Chapter 1, and the role of hydrogen as a real alternative in the future energy system was justified based on several outlooks. Therefore, renewable and non-renewable hydrogen production routes were presented, explaining the corresponding benefits and drawbacks. Then, the raw materials used in this Thesis work were described and the most important issues regarding the processes and the characteristics of the catalytic formulations were explained. The introduction chapter finishes by introducing the concepts of decentralized production and process intensification with the use of microreactors. In addition, a small description of these innovative reaction systems and the benefits that entailed their use were also mentioned. In Chapter 2 the main objectives of this Thesis work are summarized. The development of advanced reaction systems for hydrogen rich mixtures production is the main objective. In addition, the use and comparison between two different reaction systems, (fixed bed reactor (FBR) and microreactor), the processing of renewable raw materials, the development of new, active, selective and stable catalytic formulations, and the optimization of the operating conditions were also established as additional partial objectives. Methane and natural gas (NG) steam reforming experimental results obtained when operated with microreactor and FBR systems are presented in Chapter 3. For these experiments nickel-based (Ni/Al2O3 and Ni/MgO) and noble metal-based (Pd/Al2O3 and Pt/Al2O3) catalysts were prepared by wet impregnation and their catalytic activity was measured at several temperatures, from 973 to 1073 K, different S/C ratios, from 1.0 to 2.0, and atmospheric pressure. The Weight Hourly Space Velocity (WHSV) was maintained constant in order to compare the catalytic activity in both reaction systems. The results obtained showed a better performance of the catalysts operating in microreactors. The Ni/MgO catalyst reached the highest hydrogen production yield at 1073 K and steam-to-carbon ratio (S/C) of 1.5 under Steam methane Reforming (SMR) conditions. In addition, this catalyst also showed good activity and stability under NG reforming at S/C=1.0 and 2.0. The Ni/Al2O3 catalyst also showed high activity and good stability and it was the catalyst reaching the highest methane conversion (72.9 %) and H2out/CH4in ratio (2.4) under SMR conditions at 1073 K and S/C=1.0. However, this catalyst suffered from deactivation when it was tested under NG reforming conditions. Regarding the activity measurements carried out with the noble metal-based catalysts in the microreactor systems, they suffered a very quick deactivation, probably because of the effects attributed to carbon deposition, which was detected by Scanning Electron Microscope (SEM). When the FBR was used no catalytic activity was measured with the catalysts under investigation, probably because they were operated at the same WHSV than the microreactors and these WHSVs were too high for FBR system. In Chapter 4 biogas reforming processes were studied. This chapter starts with an introduction explaining the properties of the biogas and the main production routes. Then, the experimental procedure carried out is detailed giving concrete information about the experimental set-up, defining the parameters measured, specifying the characteristics of the reactors used and describing the characterization techniques utilized. Each following section describes the results obtained from activity testing with the different catalysts prepared, which is subsequently summarized: Section 4.3: Biogas reforming processes using γ-Al2O3 based catalysts The activity results obtained by several Ni-based catalysts and a bimetallic Rh-Ni catalyst supported on magnesia or alumina modified with oxides like CeO2 and ZrO2 are presented in this section. In addition, an alumina-based commercial catalyst was tested in order to compare the activity results measured. Four different biogas reforming processes were studied using a FBR: dry reforming (DR), biogas steam reforming (BSR), biogas oxidative reforming (BOR) and tri-reforming (TR). For the BSR process different steam to carbon ratios (S/C) from 1.0 to 3.0, were tested. In the case of BOR process the oxygen-to-methane (O2/CH4) ratio was varied from 0.125 to 0.50. Finally, for TR processes different S/C ratios from 1.0 to 3.0, and O2/CH4 ratios of 0.25 and 0.50 were studied. Then, the catalysts which achieved high activity and stability were impregnated in a microreactor to explore the viability of process intensification. The operation with microreactors was carried out under the best experimental conditions measured in the FBR. In addition, the physicochemical characterization of the fresh and spent catalysts was carried out by Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES), N2 physisorption, H2 chemisorption, Temperature Programmed Reduction (TPR), SEM, X-ray Photoelectron Spectroscopy (XPS) and X-ray powder Diffraction (XRD). Operating with the FBR, conversions close to the ones predicted by thermodynamic calculations were obtained by most of the catalysts tested. The Rh-Ni/Ce-Al2O3 catalyst obtained the highest hydrogen production yield in DR. In BSR process, the Ni/Ce-Al2O3 catalyst achieved the best activity results operating at S/C=1.0. In the case of BOR process, the Ni/Ce-Zr-Al2O3 catalyst showed the highest reactants conversion values operating at O2/CH4=0.25. Finally, in the TR process the Rh-Ni/Ce-Al2O3 catalyst obtained the best results operating at S/C=1.0 and O2/CH4=0.25. Therefore, these three catalysts were selected to be coated onto microchannels in order to test its performance under BOR and TR processes conditions. Although the operation using microreactors was carried out under considerably higher WHSV, similar conversions and yields as the ones measured in FBR were measured. Furthermore, attending to other measurements like Turnover Frequency (TOF) and Hydrogen Productivity (PROD), the values calculated for the catalysts tested in microreactors were one order of magnitude higher. Thus, due to the low dispersion degree measured by H2-chemisorption, the Ni/Ce-Al2O3 catalyst reached the highest TOF and PROD values. Section 4.4: Biogas reforming processes using Zeolites L based catalysts In this section three type of L zeolites, with different morphology and size, were synthesized and used as catalyst support. Then, for each type of L zeolite three nickel monometallic and their homologous Rh-Ni bimetallic catalysts were prepared by the wetness impregnation method. These catalysts were tested using the FBR under DR process and different conditions of BSR (S/C ratio of 1.0 and 2.0), BOR (O2/CH4 ratio of 0.25 and 0.50) and TR processes (at S/C=1.0 and O2/CH4=0.25). The characterization of these catalysts was also carried out by using the same techniques mentioned in the previous section. Very high methane and carbon dioxide conversion values were measured for almost all the catalysts under investigation. The experimental results evidenced the better catalytic behavior of the bimetallic catalysts as compared to the monometallic ones. Comparing the catalysts behavior with regards to their morphology, for the BSR process the Disc catalysts were the most active ones at the lowest S/C ratio tested. On the contrary, the Cylindrical (30–60 nm) catalysts were more active under BOR conditions at O2/CH4=0.25 and TR processes. By the contrary, the Cylindrical (1–3 µm) catalysts showed the worst activity results for both processes. Section 4.5: Biogas reforming processes using Na+ and Cs+ doped Zeolites LTL based catalysts A method for the synthesis of Linde Type L (LTL) zeolite under microwave-assisted hydrothermal conditions and its behavior as a support for heterogeneously catalyzed hydrogen production is described in this section. Then, rhodium and nickel-based bimetallic catalysts were prepared in order to be tested by DR process and BOR process at O2/CH4=0.25. Moreover, the characterization of the catalysts under investigation was also carried out. Higher activities were achieved by the catalysts prepared from the non-doped zeolites, Rh-Ni/D and Rh-Ni/N, as compared to the ones supported on Na+ and Cs+ exchanged supports. However, the differences between them were not very significant. In addition, the Na+ and Cs+ incorporation affected mainly to the Disc catalysts. Comparing the results obtained by these catalysts with the ones studied in the section 4.4, in general worst results were achieved under DR conditions and almost the same results when operated under BOR conditions. In Chapter 5 the ethylene glycol (EG) as feed for syngas production by steam reforming (SR) and oxidative steam reforming (OSR) was studied by using microchannel reactors. The product composition was determined at a S/C of 4.0, reaction temperatures between 625°C and 725°C, atmospheric pressure and Volume Hourly Space Velocities (VHSV) between 100 and 300 NL/(gcath). This work was divided in two sections. The first one corresponds to the introduction of the main and most promising EG production routes. Then, the new experimental procedure is detailed and the information about the experimental set-up and the measured parameters is described. The characterization was carried out using the same techniques as for the previous chapter. Then, the next sections correspond to the catalytic activity and catalysts characterization results. Section 5.3: xRh-cm and xRh-np catalysts for ethylene glycol reforming Initially, catalysts with different rhodium loading, from 1.0 to 5.0 wt. %, and supported on α-Al2O3 were prepared by two different preparation methods (conventional impregnation and separate nanoparticle synthesis). Then, the catalysts were compared regarding their measured activity and selectivity, as well as the characterization results obtained before and after the activity tests carried out. The samples prepared by a conventional impregnation method showed generally higher activity compared to catalysts prepared from Rh nanoparticles. By-product formation of species such as acetaldehyde, ethane and ethylene was detected, regardless if oxygen was added to the feed or not. Among the catalysts tested, the 2.5Rh-cm catalyst was considered the best one. Section 5.4: 2.5Rh-cm catalyst support modification with CeO2 and La2O3 In this part of the Chapter 5, the catalyst showing the best performance in the previous section, the 2.5Rh-Al2O3 catalyst, was selected in order to be improved. Therefore, new Rh based catalysts were designed using α-Al2O3 and being modified this support with different contents of CeO2 or La2O3 oxides. All the catalysts containing additives showed complete conversion and selectivities close to the equilibrium in both SR and OSR processes. In addition, for these catalysts the concentrations measured for the C2H4, CH4, CH3CHO and C2H6 by-products were very low. Finally, the 2.5Rh-20Ce catalyst was selected according to its catalytic activity and characterization results in order to run a stability test, which lasted more than 115 hours under stable operation. The last chapter, Chapter 6, summarizes the main conclusions achieved throughout this Thesis work. Although very high reactant conversions and rich hydrogen mixtures were obtained using a fixed bed reaction system, the use of microreactors improves the key issues, heat and mass transfer limitations, through which the reforming reactions are intensified. Therefore, they seem to be a very interesting and promising alternative for process intensification and decentralized production for remote application.