973 resultados para Accumulated damage


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epidemiological studies have indicated that Western diets are related to an increase in a series of malignancies. Among the compounds that are credited for this toxic effect are heme and lipid peroxides. We evaluated the effects of hemoglobin (Hb) and linoleic acid hydroperoxides (LAOOH) on a series of toxicological endpoints, such as cytotoxicity, redox status, lipid peroxidation, and DNA damage. We demonstrated that the preincubation of SW480 cells with Hb and its subsequent exposure to LAOOH (Hb + LAOOH) led to an increase in cell death, DCFH oxidation, malonaldehyde formation, and DNA fragmentation and that these effects were related to the peroxide group and the heme present in Hb. Furthermore, Hb and LAOOH alone exerted a toxic effect on the endpoints assayed only at concentrations higher than 100 mu M. We were also able to show that SW480 cells presented a higher level of the modified DNA bases 8-oxo-7,8-dihydro-2`-deoxyguanosine and 1,N(2)-etheno-2`-deoxyguanosine compared to the control. Furthermore, incubations with Hb led to an increase in intracellular iron levels, and this high level of iron correlated with DNA oxidation, as measured as EndoIII- and Fpg-sensitive sites. Thus, Hb from either red meat or bowel bleeding could act as an enhancer of fatty acid hydroperoxide genotoxicity, which contributes to the accumulation of DNA lesions in colon cancer cells. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of nitrosative species on cyt c structure and peroxidase activity were investigated here in the presence of O(2)(center dot-) and anionic and zwitterionic vesicles. Nitrosative species were generated by 3-morpholinesydnonymine (SIN1) decomposition, using cyt c heme iron and/or molecular oxygen as electron acceptor. Far-and near-UV CD spectra of SIN1-treated cyt c revealed respectively a slight decrease of a-helix content (from 39 to 34%) and changes in the tryptophan structure accompanied by increased fluorescence. The Soret CD spectra displayed a significant decrease of the positive signal at 403 nm. EPR spectra revealed the presence of a low-spin cyt c form (S = 1/2) with g(1) = 2.736, g(2) = 2.465, and g(3) = 2.058 after incubation with SIN1. These data suggest that the concomitant presence of NO(center dot) and O(2)(center dot-) generated from dissolved oxygen, in a system containing cyt c and liposomes, promotes chemical and conformational modi. cations in cyt c, resulting in a hypothetical bis-histidine hexacoordinated heme iron. We also show that, paradoxically, O(2)(center dot-) prevents not only membrane lipoperoxidation by peroxide-derived radicals but also oxidation of cyt c itself due to the ability of O(2)(center dot-) to reduce heme iron. Finally, lipoperoxidation measurements showed that, although it is a more efficient peroxidase, SIN1-treated cyt c is not more effective than native cyt c in promoting damage to anionic liposomes in the presence of tert-ButylOOH, probably due to loss of affinity with negatively charged lipids. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultraviolet radiation is one of the most deleterious forms of radiation to terrestrial organisms and is involved in formation of mutagenic pyrimidine dimers and oxidized nucleotides. The biflavonoid fraction (BFF), extracted from needles of Araucaria angustifolia was capable of protecting calf thymus DNA from damage induced by UV radiation. This occurred through prevention of cyclobutane thymine dimer and 8-oxo-7,8-dihydro-2`-deoxyguanosine formation, this being quantified by high-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS) in a multiple reaction monitoring mode (MRM) and by HPLC-coulometric detection, respectively. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mitochondria contain their own genome, a small circular molecule of around 16.5 kbases. The mitochondrial DNA (mtDNA) encodes for only 13 polypeptides, but its integrity is essential for mitochondrial function, as all 13 proteins are regulatory subunits of the oxidative phosphorylation complexes. Nonetheless, the mtDNA is physically associated with the inner mitochondrial membrane, where the majority of the cellular reactive oxygen species are generated. In fact, the mitochondrial DNA accumulates high levels of oxidized lesions, which have been associated with several pathological and degenerative processes. The cellular responses to nuclear DNA damage have been extensively studied, but so far little is known about the functional outcome and cellular responses to mtDNA damage. In this review we will discuss the mechanisms that lead to damage accumulation and the in vitro models we are establishing to dissect the cellular responses to oxidative damage in the mtDNA and to sort out the differential cellular consequences of accumulation of damage in each cellular genome, the nuclear and the mitochondrial genome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methylmalonic acidemia is one of the most prevalent inherited metabolic disorders involving neurological deficits. In vitro experiments, animal model studies and tissue analyses from human patients suggest extensive impairment of mitochondrial energy metabolism in this disease. This review summarizes changes in mitochondrial energy metabolism occurring in methylmalonic acidemia, focusing mainly on the effects of accumulated methylmalonic acid, and gives an overview of the results found in different experimental models. Overall, experiments to date suggest that mitochondrial impairment in this disease occurs through a combination of the inhibition of specific enzymes and transporters, limitation in the availability of substrates for mitochondrial metabolic pathways and oxidative damage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

7,8-Dihydro-8-oxoguanine DNA glycosylase (OGG1) is a major DNA glycosylase involved in base-excision repair (BER) of oxidative DNA damage to nuclear and mitochondrial DNA (mtDNA). We used OGG1-deficient (OGG1(-/-)) mice to examine the possible roles of OGG1 in the vulnerability of neurons to ischemic and oxidative stress. After exposure of cultured neurons to oxidative and metabolic stress levels of OGG1 in the nucleus were elevated and mitochondria exhibited fragmentation and increased levels of the mitochondrial fission protein dynamin-related protein 1 (Drp1) and reduced membrane potential. Cortical neurons isolated from OGG1(-/-) mice were more vulnerable to oxidative insults than were OGG1(+/+) neurons, and OGG1(-/-) mice developed larger cortical infarcts and behavioral deficits after permanent middle cerebral artery occlusion compared with OGG1(+/+) mice. Accumulations of oxidative DNA base lesions (8-oxoG, FapyAde, and FapyGua) were elevated in response to ischemia in both the ipsilateral and contralateral hemispheres, and to a greater extent in the contralateral cortex of OGG1(-/-) mice compared with OGG1(+/+) mice. Ischemia-induced elevation of 8-oxoG incision activity involved increased levels of a nuclear isoform OGG1, suggesting an adaptive response to oxidative nuclear DNA damage. Thus, OGG1 has a pivotal role in repairing oxidative damage to nuclear DNA under ischemic conditions, thereby reducing brain damage and improving functional outcome. Journal of Cerebral Blood Flow & Metabolism (2011) 31, 680-692; doi:10.1038/jcbfm.2010.147; published online 25 August 2010

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutations in the gene encoding cytosolic Cu,Zn-superoxide dismutase (SOD1) have been linked to familial amyotrophic lateral sclerosis (FALS). However the molecular mechanisms of motor neuron death are multifactorial and remain unclear. Here we examined DNA damage;p53 activity and apoptosis in SH-SY5Y human neuroblastoma cells transfected to achieve low-level expression of either wild-type or mutant Gly(93) --> Ala (G93A) SOD1, typical of FALS. DNA damage was investigated by evaluating the levels of 8-oxo-7,8-dihydro-2`-deoxyguanosine (8-oxodGuo) and DNA strand breaks. Significantly higher levels of DNA damage, increased p53 activity, and a greater percentage of apoptotic cells were observed in SH-SY5Y cells transfected with G93A SOD1 when compared to cells overexpressing wild-type SOD1 and untransfected cells. Western blot, FACS, and confocal microscopy analysis demonstrated that G93A SOD1 is present in the nucleus in association with DNA. Nuclear G93A SOD1 has identical superoxide dismutase activity but displays increased peroxidase activity when compared to wild-type SOD1. These results indicate that the G93A mutant SOD1 association with DNA might induce DNA damage and trigger the apoptotic response by activating p53. This toxic activity of mutant SOD1 in the nucleus may play an important role in the complex mechanisms associated with motor neuron death observed in ALS pathogenesis. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ni(II)GGH (GGH, glycylglycyl-L-histidine) reacts rapidly with S(IV), in air-saturated solution, to produce Ni(III)GGH. A mechanism is proposed where Ni(III) oxidizes SO(3)(2-) to SO(3)(center dot-), which reacts with dissolved oxygen to produce SO(5)(center dot-), initiating radical chain reactions. DNA strand breaks and 8-oxo-7,8-dihydro-20-deoxyguanosine (8-oxodGuo) formation were observed in air-saturated solutions containing micromolar concentrations of nickel(II) and S(IV). The efficacies of melatonin, (-)-epigallocatechin-gallate (from green tea), resveratrol, tannic, and ascorbic acids in terms of their inhibitory activities of DNA strand breaks and 8-oxodGuo formation were evaluated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We previously demonstrated that Bis[(2-oxindol-3-ylimino)-2-(2-aminoethyl) pyridine-N, N`] copper(II) [Cu(isaepy)(2)] was an efficient inducer of the apoptotic mitochondrial pathway. Here, we deeply dissect the mechanisms underlying the ability of Cu(isaepy)(2) to cause mitochondriotoxicity. In particular, we demonstrate that Cu(isaepy)(2) increases NADH-dependent oxygen consumption of isolated mitochondria and that this phenomenon is associated with oxy-radical production and insensitive to adenosine diphosphate. These data indicate that Cu(isaepy)(2) behaves as an uncoupler and this property is also confirmed in cell systems. Particularly, SH-SY5Y cells show: (i) an early loss of mitochondrial transmembrane potential; (ii) a decrease in the expression levels of respiratory complex components and (iii) a significant adenosine triphosphate (ATP) decrement. The causative energetic impairment mediated by Cu(isaepy)(2) in apoptosis is confirmed by experiments carried out with rho(0) cells, or by glucose supplementation, where cell death is significantly inhibited. Moreover, gastric and cervix carcinoma AGS and HeLa cells, which rely most of their ATP production on oxidative phosphorylation, show a marked sensitivity toward Cu(isaepy)(2). Adenosine monophosphate-activated protein kinase (AMPK), which is activated by events increasing the adenosine monophosphate: ATP ratio, is deeply involved in the apoptotic process because the overexpression of its dominant/negative form completely abolishes cell death. Upon glucose supplementation, AMPK is not activated, confirming its role as fuel-sensing enzyme that positively responds to Cu(isaepy)(2)-mediated energetic impairment by committing cells to apoptosis. Overall, data obtained indicate that Cu(isaepy)(2) behaves as delocalized lipophilic cation and induces mitochondrial-sited reactive oxygen species production. This event results in mitochondrial dysfunction and ATP decrease, which in turn triggers AMPK-dependent apoptosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CD and EPR were used to characterize interactions of oxindole-Schiff base copper(II) complexes with human serum albumin (HSA). These imine ligands form very stable complexes with copper, and can efficiently compete for this metal ion towards the specific N-terminal binding site of the protein, consisting of the amino acid sequence Asp-Ala-His. Relative stability constants for the corresponding complexes were estimated from CD data, using the protein as competitive ligand, with values of log K(CuL) in the range 15.7-18.1, very close to that of [Cu(HSA)] itself, with log K(CuHSA) 16.2. Some of the complexes are also able to interfere in the a-helix structure of the protein, while others seem not to affect it. EPR spectra corroborate those results, indicating at least two different metal species in solution, depending on the imine ligand. Oxidative damage to the protein after incubation with these copper(II) complexes, particularly in the presence of hydrogen peroxide, was monitored by carbonyl groups formation, and was observed to be more severe when conformational features of the protein were modified. Complementary EPR spin-trapping data indicated significant formation of hydroxyl and carbon centered radicals, consistent with an oxidative mechanism. Theoretical calculations at density functional theory (DFT) level were employed to evaluate Cu(II)-L binding energies, L -> Cu(II) donation, and Cu(II) -> L back-donation, by considering the Schiff bases and the N-terminal site of HSA as ligands. These results complement previous studies on cytotoxicity, nuclease and pro-apoptotic properties of this kind of copper(II) complexes, providing additional information about their possibilities of transport and disposition in blood plasma. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study we examined the possible antigenotoxic effect of selenium (Se) in rats chronically exposed to low levels of methylmercury (MeHg) and the association between glutathione peroxidase (GSH-Px) activity and DNA lesions (via comet assay) in the same exposed animals. Rats were divided into six groups as follows: (Group I) received water; (Group II) received MeHg (100 mu g/day); (Group III) received Se (2 mg/L drinking water); (Group IV) received Se (6 mg/L drinking water); (Group V) received MeHg (100 mu g/day) and Se (2 mg/L drinking water); (Group VI) received MeHg (100 mu g/day) and Se (6 mg/L drinking water). Total treatment time was 100 days. GSH-Px activity was determined spectrophotometrically and DNA damage was determined by comet assay. Mean GSH-Px activity in groups I, II, III, IV, V and VI were, respectively: 40.19 +/- A 17.21; 23.63 +/- A 6.04; 42.64 +/- A 5.70; 38.50 +/- A 7.15; 34.54 +/- A 6.18 and 41.39 +/- A 11.67 nmolNADPH/min/gHb. DNA damage was represented by a mean score from 0 to 300; the results for groups I, II, III, IV, V and VI were, respectively: 6.87 +/- A 3.27; 124.12 +/- A 13.74; 10.62 +/- A 3.81; 13.25 +/- A 1.76; 86.87 +/- A 11.95 and 76.25 +/- A 7.48. There was a significant inhibition of GSH-Px activity in group II compared with group I (P < 0.05). Groups V and VI did not show a difference in enzyme activity compared with groups III and IV, showing the possible protective action of Se. Comet assay presented a significant difference in DNA migration between group II and group I (P < 0.0001). Groups V and VI showed a significant reduction in MeHg-induced genotoxicity (P < 0.001) when compared with group II. A negative correlation (r = -0.559, P < 0.05) was found between GSH-Px activity and DNA lesion, showing that the greater the DNA damage, the lower the GSH-Px activity. Our findings demonstrated the oxidative and genotoxic properties of MeHg, even at low doses. Moreover, Se co-administration reestablished GSH-Px activity and reduced DNA damage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In industrial polymer and synthetic rubber production facilities, workers are exposed to 1,3-butadiene. This compound is converted in vivo to 1,2,3,4-diepoxybutane (DEB) and has been linked to increased incidences of cancer in these individuals. Carcinogenesis has been attributed to formation of DEB induced DNA interstrand cross-links. Previous studies have demonstrated that DEB cross-links deoxyguanosine residues within 5'-GNC sequences in synthetic DNA, in restriction fragments, and in defined sequence nucleosomes. The current study utilized the polymerase chain reaction (PCR) to examine DEB damage frequencies within nuclear genes, found within "open" regions of chromatin, as compared to regions of unexpressed sequence that reside in tightly packed, "closed" chromatin, to more closely model DEB reactivity in vivo. These initial studies have been performed in chicken liver homogenates. Preliminarily, we have found a dose-dependent DEB lesion-forming response within "open" chromatin. DEB appears to have little-to-no effect upon regions of "closed" chromatin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diepoxybutane (DEB), a known industrial carcinogen, reacts with DNA primarily at the N7 position of deoxyguanosine residues and creates interstrand cross-links at the sequence 5'-GNC. Since N7-N7 cross-links cause DNA to fragment upon heating, quantative polymerase chain reaction (QPCR) is being used in this experiment to measure the amount of DEB damage (lesion frequency) with three different targets-mitochondrial (unpackaged), open chromatin region, and closed chromatin region. Initial measurements of DEB damage within these three targets were not consistent because the template DNA was not the limiting reagent in the PCR. Follow-up PCR trials using a limiting amount of DNA are still in progress although initial experimentation looks promising. Sequencing of these three targets to confirm the primer targets has only been successfully performed for the closed chromatin target and does not match the sequence from NIH used to design that primer pair. Further sequencing trials need to be conducted on all three targets to assure that a mitochondrial, open chromatin, and closed chromatin region are actually being amplified in this experimental series.