1000 resultados para Absortimetria de raios-x em duas energias
Resumo:
Were synthesized systems Ni0,5Zn0,5Fe2O4, i0,2Zn0,5Mn0,3Fe2O4, Mn0,5Zn0,5Fe2O4, Ni0,5Mg0,5Fe2O4, Ni0,2Cu0,3Zn0,5Fe2O4 and Ni0,2Cu0,3Zn0,5Mg0,08Fe2O4, the precursors citrate method. The decomposition of the precursors was studied by thermogravimetric analysis and spectroscopy in the infrared region, the temperature of 350°C/3h. The evolution of the phases formed after calcinations at 350, 500, 900 and 1100ºC/3h was accompanied by X-ray diffraction using the Rietveld refinement to better identify the structures formed. The materials were also analyzed by scanning electron microscopy, magnetic measurements and analysis of the reflectivity of the material. The samples calcined at different temperatures showed an increase of crystallinity with increasing calcination temperature, verifying that for some compositions at temperatures above 500°C precipitates of second phase such as hematite and CuO. The compositions of manganese present in the structure diffusion processes slower due to the ionic radius of manganese is greater than for other ions substitutes, a fact that delays the stabilization of spinel structure and promotes the precipitation of second phase. The compositions presented with copper precipitation CuO phase at a temperature of 900 and 1100ºC/3h This occurs according to the literature because the concentration of copper in the structure is greater than 0.25 mol%. The magnetic measurements revealed features of a soft ferrimagnetic material, resulting in better magnetic properties for the NiZn ferrite and NiCuZnMg at high temperatures. The reflectivity measurements showed greater absorption of electromagnetic radiation in the microwave band for the samples calcined at 1100ºC/3h, which has higher crystallite size and consequently the formation of multi-domain, increasing the magnetization of the material. The results of absorption agreed with the magnetic measurements, indicating among the ferrites studied, those of NiZn and NiCuZnMg as better absorbing the incident radiation.
Resumo:
This work involved the synthesis, characterization and proposing the molecular structure of coordination compounds involving ligands pyrazine-2-carboxamide (PZA) and 4- hydrazide acidic pyridine carboxylic (INH) and metals of the first transition series (M = Co2+, Ni2+ and Cu2+). For the characterization of the compounds used were analytical techniques such as infrared absorption spectroscopy average (FT-IR) molar conductivity measurements, CHN elemental analysis, EDTA Complexometric, measurement of melting point, X-ray diffraction by powder method, Thermogravimetry (TG) and Differential Thermal Analysis (DTA) and Simultaneous Differential Scanning Calorimetry (DSC). The absorption spectra in the infrared region suggested that the ligand coordination to the metal center occurs through the carbonyl oxygen atom and nitrogen alpha pyrazine ring to those complexes formed with PZA. For INH complexes with metal-ligand coordination is through the carbonyl oxygen and nitrogen of the terminal hydrazide grouping. The conductivity measurements of the complexes in aqueous solution they suggest to all behavior of the type 1:2 electrolytes, and conduct of non-electrolytes in acetonitrile. The results obtained by CHN elemental analysis and EDTA Complexometric allowed to infer the stoichiometry of the compounds synthesized. For all of the complexes obtained was possible to record the melting points, neither of which melted near the melting temperature of the free ligands. The X-ray diffraction showed that the complexes of pyrazinamide exhibited diffraction lines, suggesting that these compounds are crystalline, while compounds of isoniazid, with the exception of cobalt, exhibited diffraction lines, indicating that they are crystalline. The results from the TG-DTA and DSC allowed information regarding the dehydration and thermal decomposition of these complexes
Resumo:
In this research the removal of light and heavy oil from disintegrated limestone was investigated with use of microemulsions. These chemical systems were composed by surfactant, cosurfactant, oil phase and aqueous phase. In the studied systems, three points in the water -rich microemulsion region of the phase diagrams were used in oil removal experiments. These microemulsion systems were characterized to evaluate the influence of particle size, surface tension, density and viscosity in micellar stability and to understand how the physical properties can influence the oil recovery process. The limestone rock sample was characterized by thermogravimetry, BET area, scanning electron microscopy and X-ray fluorescence. After preparation, the rock was placed in contact with light and heavy oil solutions to allow oil adsorption. The removal tests were performed to evaluate the influence of contact time (1 minute, 30 minutes, 60 minutes and 120 minutes), the concentration of active matter (20, 30 and 40 %), different cosurfactants and different oil phases. For the heavy oil, the best result was on SME 1, with 20 % of active matter, 1 minute of contact time, with efficiency of 93,33 %. For the light oil, also the SME 1, with 20 % of active matter, 120 minutes of contact time, with 62,38 % of efficiency. From the obtained results, it was possible to conclude that microemulsions can be considered as efficient chemical systems for oil removal from limestone formations
Resumo:
The study of polymer blends has been an alternative method in the search field of new materials for obtaining materials with improved properties. In this work blends of poly(methyl methacrylate) (PMMA) and poly(ethylene oxide) (PEO) doped with titanium dioxide (TiO2) were studied. The PEO is a polymer semicrystalline structure varying between, 70 and 84% crystallinity, while the PMMA exhibits behavior amorphous in their structure. The use of TiO2 is related to corrosion-resistant of titanium as well as good heat transfer and other characteristics. The study of these polymer blends doped TiO2 gives the properties junction organic (polymer) and inorganic (oxide) which leads to modification of the properties of the resultant material. The blends were doped TiO2 (POE/PMMA/TiO2) in different proportions of the PMMA with the PEO and TiO2 fixed. The ratios were: 90/10/0,1; 85/15/0, 1; 80/20/0,1, 75/25/0,1 and 70/30/0,1. The resulting material was obtained in powder form and being characterized by Fourier Transformed Infrared (FTIR) Spectroscopy, Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), Thermogravimetric Analysis (TGA) and Electrochemical Impedance Spectroscopy (EIS). The infrared spectra (IR) for the blends in different ratios showed a band at 1744 cm-1, characteristic of the C=O stretching, which increases in intensity with increasing PMMA composition, while in the spectrum of pure PEO this band is absent. This may suggest that the interaction is occurring between the polymers. In the micrographs of the blends also observed change in their surfaces with variation of the composition of PMMA, contributing to the change of the electrical properties of the material. The EIS data showed that the material exhibited conductivity of the order of 10-6 S.cm-1. The blend in the ratio B2(85/15/0, 1) showed better conductivity, σ = 1.56 x 10-6 S.cm-1. It was observed that the diffusion coefficient for the blends, B5(70/30/0, 1) was the largest, 1.07 x 10-6 m2.s-1. The XRD data showing that, with the variation in the composition of the PMMA blend crystallinity of the material is decreased reaching a minimum B3(80/20/0,1), and then increases again. Thermal analysis suggests that blends made from the material obtained can be applied at room temperature
Resumo:
The nanostructured molecular sieve SBA-15 was synthesized by the hydrothermal method, and modified with lanthanum with Si/La molar ratios of 25, 50, 75 and 100. The materials were evaluated as catalysts for the cracking of n-hexane model reaction. Type SBA- 15 and LaSBA-15 mesoporous materials were synthesized using tetraetilortosilicato as a source of silica, hydrochloric acid, heptahydrate lanthanum chloride and distilled water. Pluronic P123 triblock. polymer was used as structure template. The syntheses were carried out by 72 hours. The obtained SBA-15 samples were previously analyzed by thermogravimetry, in order to check the conditions of calcination for removal of organic template. Then, the calcined materials were characterized by X-ray diffraction, infrared spectroscopy, adsorption and desorption of nitrogen, scanning electron microscopy and X-ray microanalysis by dispersive energy. The acidity of the samples was determined using adsorption of n-bulinamina and desorption followed by thermogravimetry. It was found that the hydrothermal synthesis method was suitable for the synthesis of the SBA-15 mesoporous materials, with an excellent degree of hexagonal ordering. The reactions of catalytic cracking of n-hexane were carried out using a fixed bed continuous flow microreactor, coupled on-line to a gas chromatograph. From the catalytic evaluation, it was observed that the mesoporous materials containing lanthanum showed different results for the reaction of cracking of nhexane compared to the unmodified mesoporous material SBA-15. As a result of cracking was obtained as main products hydrocarbons in the range of C1 to C5. The catalyst that showed better properties in relation to the acidity and catalytic activity was LaSBA-15 with the ratio Si/La = 50
Resumo:
During the storage of oil, sludge is formed in the bottoms of tanks, due to decantation, since the sludge is composed of a large quantity of oil (heavy petroleum fractions), water and solids. The oil sludge is a complex viscous mixture which is considered as a hazardous waste. It is then necessary to develop methods and technologies that optimize the cleaning process, oil extraction and applications in industry. Therefore, this study aimed to determine the composition of the oil sludge, to obtain and characterize microemulsion systems (MES), and to study their applications in the treatment of sludge. In this context, the Soxhlet extraction of crude oil sludge and aged sludge was carried out, and allowing to quantify the oil (43.9 % and 84.7 % - 13 ºAPI), water (38.7 % and 9.15 %) and solid (17.3 % and 6.15 %) contents, respectively. The residues were characterized using the techniques of X-ray fluorescence (XRF), Xray diffraction (XRD) and transmission Infrared (FT-IR). The XRF technique determined the presence of iron and sulfur in higher proportions, confirming by XRD the presence of the following minerals: Pyrite (FeS2), Pyrrhotite (FeS) and Magnetite (Fe3O4). The FT-IR showed the presence of heavy oil fractions. In parallel, twelve MES were prepared, combining the following constituents: two nonionic surfactants (Unitol L90 and Renex 110 - S), three cosurfactants (butanol, sec-butanol and isoamyl alcohol - C), three aqueous phase (tap water - ADT, acidic solution 6 % HCl, and saline solution - 3.5 % NaCl - AP) and an oil phase (kerosene - OP). From the obtained systems, a common point was chosen belonging to the microemulsion region (25 % [C+S] 5 % OP and AP 70 %), which was characterized at room temperature (25°C) by viscosity (Haake Rheometer Mars), particle diameter (Zeta Plus) and thermal stability. Mixtures with this composition were applied to oil sludge solubilization under agitation at a ratio of 1:4, by varying time and temperature. The efficiencies of solubilization were obtained excluding the solids, which ranged between 73.5 % and 95 %. Thus, two particular systems were selected for use in storage tanks, with efficiencies of oil sludge solubilization over 90 %, which proved the effectiveness of the MES. The factorial design delimited within the domain showed how the MES constituents affect the solubilization of aged oil sludge, as predictive models. The MES A was chosen as the best system, which solubilized a high amount of aged crude oil sludge (~ 151.7 g / L per MES)
Resumo:
A new self-sustainable film was prepared through the sol-gel modified method, previously employed in our research group; sodium alginate was used as the polymer matrix, along with plasticizer glycerol, doped with titanium dioxide (TiO2) and tungsten trioxide (WO3). By varying WO3 concentration (0,8, 1,6, 2,4 and 3,2 μmol) and keeping TiO2 concentration constant (059 mmol), it was possible to study the contribution of these oxides on the obtained films morphological and electrical properties. Self-sustainable films have analyzed by Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XDR), Scanning Electron Microscope (SEM), Energy Dispersive X-ray Spectroscopy (EDS) and Electrochemical Impedance Spectroscopy (EIS). By the IR specters, it was possible identify the TiO2, and posteriorly WO3, addition has provided dislocation of alginate characteristics bands to smaller vibrations frequencies indicating an electrostatic interaction between the oxides and the polymer matrix. Diffractograms show predominance of the amorphous phase in the films. SEM, along with EDX, analysis revealed self-sustainable films showed surface with no cracks and relative dispersion of the oxides throughout the polymer matrix. From Impedance analysis, it was observe increasing WO3 concentration to 2,4 μmol provided a reduction of films resistive properties and consequent improvement of conductive properties
Resumo:
Materials consisting of perovskite-type oxides (ABO3) have been developed in this work for applications in fuel cell cathodes of solid oxide type (SOFC). These ceramic materials are widely studied for this type of application because they have excellent electrical properties, conductivity and electrocatalytic. The oxides LaMnO3, LaFeO3, LaFe0.2Mn0.8O3 e La0.5Fe0.5MnO3 were synthesized by the method of microwave assisted combustion and after sintering at 800°C in order to obtain the desired phases. The powders were characterized by thermogravimetry (TG), X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM) and voltammetric analysis (cyclic voltammetry and polarization curves). The results obtained by XRF technique showed that the microwave synthesis method was effective in obtaining doping oxides with values near stoichiometric. In general, powders were obtained with particle size less than 0.5 μm, having a porous structure and uniform particle size distribution. The particles showed spherical form, irregular and crowded of varying sizes, according to the analysis of SEM. The behavior of the oxides opposite the thermal stability was monitored by thermogravimetric curves (TG), which showed low weight loss values for all samples, especially those of manganese had its structure. By means of Xray diffraction of the samples sintered at 800°C was possible to observe the formation of powders having high levels of crystallinity. Furthermore, undesirable phases such as La2O3 and MnOx were not identified in the diffractograms. These phases block the transport of oxygen ions in the electrode/electrolyte interface, affecting the electrochemical activity of the system. The voltammetric analysis of the electrocatalysts LF-800, LM-800, LF2M8-800 e L5F5M-800 revealed that these materials are excellent electrical conductors, because it increased the passage of electrical current of the working electrode significantly. Best performance for the oxygen reduction reaction was observed with iron-rich structures, considering that the materials obtained have characteristics suitable for use in fuel cell cathodes of solid oxide type
Resumo:
The alginates are copolymers of 1→4-linked β-D-mannuronic acid (M) and α-Lguluronic acid (G) residues that are arranjed in a block structure along a linear chain. Titanium dioxide, TiO2, is a ceramic material and can exist in three distinct crystallography forms: anatase, brookite and rutile. composites of organic and inorganic materials have better properties than the components alone. Thus, this study aims to synthesize, characterize and analyze the composite NaAlg-TiO2 in the form of powder and film. The synthesis of composite powders was performed using the sol-gel process and obtain the composite film was performed using the slow evaporation process, then the composites were analyzed by infrared spectroscopy, fluorescence x ray, thermal analysis, attenuated total reflection (ATR), x ray diffraction and impedance spectroscopy. The X ray diffraction patterns of composite powders show that with increasing calcination temperature, there were no complete transition of rutile-anatase crystalline phase, since at all temperatures studied (300, 500, 700, 900 and 1100ºC) were observed peaks of anatase phase. Thermal analysis shows that at 400°C caused the decomposition of sodium alginate in sodium carbonate and above 600°C, we observe an exothermic peak related to the decomposition of sodium carbonate and in the presence of titanium dioxide becomes sodium titanate. The XRD results confirm the formation of sodium carbonate at 700ºC and the formation sodium titanate in the temperature range 900-1100ºC. The sodium titanate influenced the electrical properties of the material, because with increasing temperature there was a decrease in conductivity, probably due to the creation of Ti vacancies, since the sodium can induce the reduction of surface Ti4+ ions into Ti3+ species. The infrared spectra of the composites in the form of powder and film showed a small shift in the bands compared to the spectrum of pure alginate, indicating that these shifts, even small ones, have evidence of miscibility between the polymer and ceramic material
Resumo:
Orthoferrites AFeO3 (A = rare earth) are an important class of perovskite oxides that exhibit weak ferromagnetism. These materials find numerous applications as chemical sensors, cathodes for fuel cells and catalysis, which make them interesting from the standpoint of science and technology. Their structural, electrical and magnetic properties are dependent on many factors such as the preparation method, heat treatment conditions, chemical composition and replacement of cations in sites A and/or B. In this paper, LaFe1-xMnxO3 (0 ≤ x ≤ 1) orthoferrites-type was prepared by Pechini method and Microwave-assisted combustion reaction in order to evaluate the influence of synthesis route on the formation of oxide, as well as the effect of parcial replacement of iron by manganese and heat treatment on the magnetic properties. The precursor powders were calcined at 700°C, 900°C, 1100°C and 1300°C for 4 hours and they were characterized by the techniques: Thermogravimetric analysis (TGA), X ray diffraction (XRD), Refinement by Rietveld method, Scanning electron microscopy (SEM), Reduction temperature programmed (RTP) and Magnetic hysteresis measurements performed at room temperature. According to the XRD patterns, the formation of perovskite phase with orthorhombic structure was observed for the systems where 0 ≤ x ≤ 0.5 and rhombohedral for x = 1. The results also showed a decrease of lattice parameters with the parcial replacement of iron by manganese and consequently a reduction in cell volume. The hysteresis curves exhibited weak ferromagnetism for the systems prepared by both synthesis methods. However, a dependence of magnetization as a function of dopant content was observed for samples produced by Pechini method. As for the systems prepared by combustion reaction, it was found that the secondary phases exert a strong influence on the magnetic behavior
Resumo:
Three studies were performed using tailings kaolin for the synthesis of zeolite A. The first synthesis of zeolite A was performed using a kaolin waste generated from the beneficiation of kaolin for paper production process was studied. The kaolin waste was thermally activated at a temperature range of 550-800°C. For comparison was performed a synthesis pattern of Zeolite A(procedure IZA). The prepared materials were characterized by 27Al MAS NMR, X-ray diffraction and scanning electron microscopy with microprobe rays. The pre-tramento proved to be the most appropriate and suitable temperatures are between 600 and 700°C. Observed the formation of zeolite A in all materials, reaching 52% crystallinity, and the presence of phase sodalite and amorphous material. The second study was the use of a highly reactive metakaolin originating from the Jari region in the synthesis of zeolite A by a new method of hydrothermal synthesis. The zeolite is obtained pure and highly crystalline employing the Jari kaolin calcined at 600 ° C for 2h when the transformation to metakaolin occurs. Get to zeolite phase A at 4pm. The best crystallization time was of 24 h afforded a crystallinity of 67.9%. The third study was the evaluation of the NaOH / metakaolin and crystallization time on the synthesis of zeolite NaA from a sample of kaolin waste, named Kaolin Coverage. The experiments were performed using statistical design (axial points) and rejoinder the center point. The samples were characterized by X-ray diffraction (XRD), scanning microscopic analysis and chemical analysis using an EPMA microprobe. The results showed that a relationship exists between the amount of NaOH added and the crystallization time. The experiment performed using the lowest ratio NaOH / metakaolin (0.5) and shorter (4 h) produced an amorphous material. The increase ratio of NaOH / metakaolin and crystallization time leads to formation of a more crystalline NaA phase, but the presence of phase with sodalite as impurities
Resumo:
The contamination by metal ions has been occurring for decades through the introduction of liquid effluent not treated, mainly from industrial activities, rivers and lakes, affecting water quality. For that the effluent can be disposed in water bodies, environmental standards require that they be adequately addressed, so that the concentration of metals does not exceed the limits of standard conditions of release in the receptor. Several methods for wastewater treatment have been reported in the literature, but many of them are high cost and low efficiency. The adsorption process has been used as effective for removal of metal ions. This paper presents studies to evaluate the potential of perlite as an adsorbent for removing metals in model solution. Perlite, in its natural form (NP) and expanded (EP), was characterized by X-ray fluorescence, X-ray diffraction, surface area analysis using nitrogen adsorption (BET method), scanning electron microscopy and Fourier transform infrared spectroscopy. The physical characteristic and chemical composition of the material presented were appropriate for the study of adsorption. Adsorption experiments by the method of finite bath for model solutions of metal ions Cr3+, Cu2+, Mn2+ and Ni2+ were carried out in order to study the effect of pH, mass of the adsorbent and the contact time on removal of ions in solution. The results showed that perlite has good adsorption capacity. The NP has higher adsorption capacity (mg g-1) than the EP. According to the values of the constant of Langmuir qm (mg g-1), the maximum capacity of the monolayer was obtained and in terms of proportion of mass, we found the following order experimental adsorption: Cr3+ (2.194 mg g- 1) > Ni2+ (0.585 mg g-1) > Mn2+ (0.515 mg g-1) > Cu2+ (0.513 mg g-1) and Cr3+ (1.934 mg g-1)> Ni2+ (0.514 mg g-1) > Cu2+ (0.421 mg g-1) > Mn2+ (0.364 mg g-1) on the NP and EP, respectively. The experimental data were best fitted the Langmuir model compared to Freundlich for Cu2+, Mn2+ and Ni2+. However, for the Cr3+, both models fit the experimental data
Resumo:
In this study five compositions were synthesized zirconia doped with cerium and neodymium ions in the system Ce10-xNdx Zr90O2 with 0,5 ≤ x ≤ 4,0 using the Pechini method. The powders were characterized by thermogravimetric analysis, differential thermal analysis, infrared spectroscopy and X-ray diffraction, with application of Rietveld refinement of the calcination temperatures of 350ºC/3h and 30 minutes at 900ºC/3h. All compositions stabilized with a mixture of cubic and tetragonal phase zirconia. The samples were pressed into bars and sintered at 1500°C/3h and 1500°C/6h, being characterized by Xray diffraction, with application of the Rietveld refinement, density and porosity using Archimedes method, scanning electron microscopy and resistance the three point bending. It has been observed the increase in strength with increasing sintering temperature for the compositions x = 2,0 and x = 4,0. For x = 2,0 the main phase was the cubic with 92,56% with crystallite size of 0,56 μm, density and porosity of 96,82% from 1,36%. For x = 4,0 was a mixture of cubic and tetragonal phase with 21% and 37,98%, respectively. The crystallite size was 54,21 nm and 49,64 nm with a density porosity of 97,45% and 1,32% respectively. In the analysis of the fracture surface was observed a greater amount of grain fracture intragranular type, which contribute to increase the mechanical strength of the ceramic. Increased addition of the neodymium ion in the crystal lattice of the zirconium showed a nearly linear behavior with increasing mechanical strength of the zirconia ceramic. Was obtained a bending resistance of 537 ± 38 MPa for the composition x = 2,0 predominantly attributed to cubic phase with 92,56%
Resumo:
To overcome the challenge of meeting growing energy demand in a sustainable way, biodiesel has shown very promising as alternative energy can replace fossil fuels, even partially. Industrially, the biodiesel is produced by homogeneous transesterification reaction of vegetable oils in the presence of basic species used as catalysts. However, this process is the need for purification of the esters obtained and the removal of glycerin formed after the reaction. This context, the alternative catalysts have that can improve the process of biodiesel production, aiming to reduce costs and facilitate its production. In this study, the AlSBA-15 support with Si / Al ratio = 50 was synthesized, as like as the heterogeneous catalysts of zinc oxide and magnesium supported on mesoporous AlSBA-15 silica, in the concentrations of 5, 10, 15 and 30 %, relative to the support. The textural properties and structural characterization of catalysts and supports were determined by techniques: X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) coupled to the chemical analyzer, adsorption / desorption of N2, thermal analysis (TG / DTG), absorption spectroscopy in the infrared (FTIR) and X-ray photoelectron spectroscopy (XPS). Characterization results indicated that the support AlSBA-15 retained the hexagonal ordered after the incorporation of zinc oxide and magnesium oxide in the holder. For heterogeneous catalysts, ZnO-AlSBA-15, that was observed the presence of zinc oxide nanoparticles dispersed in the surface and interior channels of the mesoporous and microporous support. The catalytic activity was evaluated by the transesterification reaction of sunflower oil via methylic route, and some reaction parameters were optimized with the most active catalyst in biodiesel production by sunflower oil. For the series of heterogeneous catalysts, the sample with 30 % ZnO supported on AlSBA-15 showed a better conversion of triglyceride to methyl esters, about 95.41 % of reaction conditions: temperature 175 °C, with molar ratio of 42:1, stirring at 200 rpm and under a pressure of 14 bar for 6 h. The catalyst MgO-AlSBA-15 showed no catalytic activity in the studied reactions
Resumo:
The Layered Double Hydroxides has become extremely promising materials due to its range of applications, easily obtained in the laboratory and reusability after calcination, so the knowledge regarding their properties is of utmost importance. In this study were synthesized layered double hydroxides of two systems, Mg-Al and Zn-Al, and such materials were analyzed with X-ray diffraction and, from these data, we determined the volume density, planar atomic density, size crystallite, lattice parameters, interplanar spacing and interlayer space available. Such materials were also subjected to thermogravimetric analysis reasons for heating 5, 10, 20 and 25 ° C / min to determine kinetic parameters for the formation of metaphases HTD and HTB based on theoretical models Ozawa, Flynn-Wall Starink and Model Free Kinetics. In addition, the layered double hydroxides synthesized in this working ratios were calcined heating 2.5 ° C / min and 20 ° C / min, and tested for adsorption of nitrate anion in aqueous solution batch system at time intervals 5 min, 15 min, 30 min, 1h, 2h and 4h. Such calcined materials were also subjected to exposure to the atmosphere and at intervals of 1 week, 2 weeks and 1 month were analyzed by infrared spectroscopy to study the kinetics of regeneration determining structural called "memory effect"