975 resultados para Absorption and beam attenuation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nondestructive photothermal methods as well as optical absorption and fluorescence spectroscopy are utilized to characterise three different materials, both thermally and optically. The possibility of using montmorillonite clay minerals, after textile waste-water treatment, is investigated for further applications. The laser induced luminescence studies and thermal characterisation of certain rare earth titanates prepared by self propagating high temperature synthesis method are also presented. Moreover, effort is made to characterise rare earth doped sol gel silica glasses with the help of these nondestructive techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optical absorption and emission spectral studies of free and metal naphthalocyanine doped borate glass matrix are reported for the first time. Absorption spectra recorded in the UV- VIS-NIR region show the characteristic absorption bands, namely, the B-band and Q-band of the naphthalocyanine (Nc) molecule. Some of the important spectral parameters, namely, the optical absorption coefficient (α), molar extinction coefficient (ε) and absorption cross section (σa) of the principal absorption transitions are determined. Optical band gap (Eg) of the materials evaluated from the functional dependence of absorption coefficient on photon energy lies in the range 1.6 eV≤Eg≤2.1 eV. All fluorescence spectra except that of EuNc consist of an intense band in the 765 nm region corresponding to the excitation of Q-band. In EuNc the maximum fluorescence intensity band is observed at 824 nm. The intensity of the principal fluorescence band is maximum in ZnNc, whereas it is minimum in H2Nc. Radiative parameters of the principal fluorescence transitions corresponding to the Q-band excitation are also reported for the naphthalocyanine and phthalocyanine based matrices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

S1 to S3 excited singlet state absorption and two-photon absorption in Rhodamine 6G at the pump wavelengths of 532 and 1064 nm respectively are investigated. The advantages of employing the pulsed photoacoustic technique for conveniently observing excited singlet state absorption are discussed. It is shown that, since photoacoustics and fluorescence are complementary phenomena, analysis using both techniques will yield a better understanding of optical processes in molecules like Rhodamine 6G.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The length-dependent tuning of the fluorescence spectra of a dye doped polymer fiber is reported. The fiber is pumped sideways and the fluorescence is measured from one of the ends. The excitation of a finite length of dye doped fiber is done by a diode pumped solid state laser at a wavelength of 532 nm. The fluorescence emission is measured at various positions of the fiber starting from a position closer to the pumping region and then progressing toward the other end of the fiber. We observe that the optical loss coefficients for shorter and longer distances of propagation through the dye doped fiber are different. At longer distances of propagation, a decrease in optical loss coefficient is observed. The fluorescence peaks exhibit a redshift of 12 nm from 589 to 610 nm as the point of illumination progresses toward the detector end. This is attributed to the self-absorption and re-emission of the laser dye in the fiber.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work focuses on the modification of the commonly used thermoplastics, polypropylene and polystyrene using nanosilica preparcd from a cheap source of sodium silicate. Melt compounding technique has been used for nanocomposite preparation as it is simple and suited to injection moulding. Nanosilica in a polymer matrix provide significant enhancement in strength, stiffness and impact strength. Incorporation of silica particles in a polymer also improves its thennal stability. To achieve better dispersion of fillers in polymer matrices the mixing was done at different shear rates. The enhancement in material properties indicates that at higher shear rates there is greater interaction between particles and the matrix and it depends on filler concentration and type of polymer used. N anosilica is a useful filler in thennoplastic polymers and has been applied in automotive applications, electronic appliances and consumer goods.This thesis is divided into six chapters. General introduction to the topic is described in chapter 1. Salient features of polymer nanocomposites, their synthesis, properties and applications are presented. A review of relevant literature and the scope and objectives are also mentioned in this chapter.The materials used and the vanous experimental method and techniques employed in the study are described in chapter 2. Preparation of nanocomposites by melt blending using Thenno Haake Rheocord, preparation of samples, evaluation of mechanical and thennal properties using UTM, Impact testing and characterization using DMA, TGA and DSC and morphology by SEM are described.The preparation of nanosilica from a laboratory scale to a pilot plant scale is described in chapter 3. Generation of surface modified silica, evaluation of kinetic parameters of the synthesis reaction, scale up of the reactor and modeling of the reactor are also dealt with in this chapter.The modification of the commodity thennoplastic, Polypropylene using nanosilica is described in chapter 4. Preparation of PP/silica nanocomposites, evaluation of mechanical properties, thermal and crystallization characteristics, water absorption and ageing resistance studies are also presented.The modification of Polystyrene using synthesized nanosilica IS described in chapter 5. The method of preparation of PS/silica nanocomposites, evaluation of mechanical properties (static and dynamic), thermal properties melt flow characteristics using Haake Rheocord, water absorption and ageing resistance of these nanocomposites are studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The microwave and electrical applications of some important conducting polymers are analyzed in this investigation.One of the major drawbacks of conducting polymers is their poor processability,and a solution to overcome this is sought in this investigation.Conducting polymer thermoplastic composites were prepared by the insitu polymerization method to improve the extent of miscibility probably to a semi IPN level.The attractive features of the conducting composite developed are excellent processability,good microwave and electrical conductivity,good microwave absorption,load sensitivity and satisfactory mechanical properties.The composite shows typical frequency selective microwave absorption and refelection behaviors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the spectral and nonlinear optical properties of ZnO-SiO2 nanocomposites prepared by colloidal chemical synthesis. Obvious enhancement of ultraviolet (UV) emission of the samples is observed, and the strongest UV emission of a typical ZnO-SiO2 nanocomposite is over three times stronger than that of pure ZnO. The nonlinearity of the silica colloid is low, and its nonlinear response can be improved by making composites with ZnO. These nanocomposites show self-defocusing nonlinearity and good nonlinear absorption behavior. The observed nonlinear absorption is explained through two photon absorption followed by weak free carrier absorption and nonlinear scattering. The nonlinear refractive index and the nonlinear absorption increase with increasing ZnO volume fraction and can be attributed to the enhancement of exciton oscillator strength. ZnO-SiO2 is a potential nanocomposite material for the UV light emission and for the development of nonlinear optical devices with a relatively small limiting threshold.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, we present the spectral and nonlinear optical properties of ZnOCu nanocomposites prepared by colloidal chemical synthesis. The emission consisted of two peaks. The 385-nm ultraviolet (UV) peak is attributed to ZnO and the 550-nm visible peak is attributed to Cu nanocolloids. Obvious enhancement of UV and visible emission of the samples is observed and the strongest UV emission of a typical ZnOCu nanocomposite is over three times stronger than that of pure ZnO. Cu acts as a sensitizer and the enhancement of UV emission are caused by excitons formed at the interface between Cu and ZnO. As the volume fraction of Cu increases beyond a particular value, the intensity of the UV peak decreases while the intensity of the visible peak increases, and the strongest visible emission of a typical ZnOCu nanocomposite is over ten times stronger than that of pure Cu. The emission mechanism is discussed. Nonlinear optical response of these samples is studied using nanosecond laser pulses from a tunable laser in the wavelength range of 450650 nm, which includes the surface plasmon absorption (SPA) band. The nonlinear response is wavelength dependent and switching from reverse saturable absorption (RSA) to saturable absorption (SA) has been observed for Cu nanocolloids as the excitation wavelength changes from the low absorption window region to higher absorption regime near the SPA band. However, ZnO colloids and ZnOCu nanocomposites exhibit induced absorption at this wavelength. Such a changeover in the sign of the nonlinearity of ZnOCu nanocomposites, with respect to Cu nanocolloids, is related to the interplay of plasmon band bleach and optical limiting mechanisms. The SA again changes back to RSA when we move over to the infrared region. The ZnOCu nanocomposites show self-defocusing nonlinearity and good nonlinear absorption behavior. The nonlinear refractive index and the nonlinear absorption increases with increasing Cu volume fraction at 532 nm. The observed nonlinear absorption is explained through two-photon absorption followed by weak free-carrier absorption and interband absorption mechanisms. This study is important in identifying the spectral range and composition over which the nonlinear material acts as a RSA-based optical limiter. ZnOCu is a potential nanocomposite material for the light emission and for the development of nonlinear optical devices with a relatively small limiting threshold.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photothermal spectroscopy is a group of high sensitivity methods used to measure optical absorption and thermal characteristics of a sample.The basis of photothermal spectroscopy is a photo-induced change in the thermal state of the sample.Light energy absorbed and not lost by subsequent emission results in sample heating.This heating results in a temperature change as well as changes in thermodynamic parameters of the sample which are related to temperature.Measurements of the temperature,pressure,or density changes that occur due to optical absorption are ultimately the basis for the photothermal spectroscopic methods.This is a more direct measure of optical absorption than optical transmission based spectroscopies.Sample heating is a direct consequence of optical absorption and so photothermal spectroscopy signals are directly dependent on light absorption.Scattering and reflection losses do not produce photothermal signals.Subsequently,photothermal spectroscopy more accurately measures optical absorption in scattering solutions,in solids,and at interfaces.This aspect makes it particularly attractive for application to surface and solid absorption studies,and studies in scattering media.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Various compositions of linear low density polyethylene(LLDPE) containing bio-filler(either starch or dextrin)of various particle sizes were prepared.The mechanical,thermal,FTIR,morphological(SEM),water absorption and melt flow(MFI) studies were carried out.Biodegradability of the compositions were determined using a shake culture flask containing amylase producing bacteria(vibrios),which were isolated from marine benthic environment and by soil burial test. The effect of low quantities of metal oxides and metal stearate as pro-oxidants in LLDPE and in the LLDPE-biofiller compositions was established by exposing the samples to ultraviolet light.The combination of bio-filler and a pro-oxidant improves the degradation of linear low density polyethylene.The maleation of LLDPE improves the compatibility of the c blend components and thepro-oxidants enhance the photodegradability of the compatibilised blends.The responsibility studies on the partially biodegradable LLDPE containing bio-fillers and pro-oxidants suggest that the blends could be repeatedly reprocessed without deterioration in mechanical properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present our recent achievements in the growing and optical characterization of KYb(WO4)2 (hereafter KYbW) crystals and demonstrate laser operation in this stoichiometric material. Single crystals of KYbW with optimal crystalline quality have been grown by the top-seeded-solution growth slow-cooling method. The optical anisotropy of this monoclinic crystal has been characterized, locating the tensor of the optical indicatrix and measuring the dispersion of the principal values of the refractive indices as well as the thermo-optic coefficients. Sellmeier equations have been constructed valid in the visible and near-IR spectral range. Raman scattering has been used to determine the phonon energies of KYbW and a simple physical model is applied for classification of the lattice vibration modes. Spectroscopic studies (absorption and emission measurements at room and low temperature) have been carried out in the spectral region near 1 µm characteristic for the ytterbium transition. Energy positions of the Stark sublevels of the ground and the excited state manifolds have been determined and the vibronic substructure has been identified. The intrinsic lifetime of the upper laser level has been measured taking care to suppress the effect of reabsorption and the intrinsic quantum efficiency has been estimated. Lasing has been demonstrated near 1074 nm with 41% slope efficiency at room temperature using a 0.5 mm thin plate of KYbW. This laser material holds great promise for diode pumped high-power lasers, thin disk and waveguide designs as well as for ultrashort (ps/fs) pulse laser systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Systematic investigations on prevulcanization of NR latex with special reference to the influence of storage of latex and after-treatments of films, have been carried out. The other aspects studied include the effect of temperature on sulphur prevulcanization, the extent of crosslinking, tensile properties, stress relaxation characteristics, water absorption and leaching characteristics of prevulcanizcd latex films

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper presents a compact planar Ultra Wide Band ¯lter employing folded stepped impedance resonators with series capacitors and dumb bell shaped defected ground structures. An interdigital quarter wavelength coupled line is used for achieving the band pass characteristics. The transmission zeros are produced by stepped impedance resonators. The ¯lter has steep roll o® rate and good attenuation in its lower and upper stop bands, contributed by the series capacitor and defected ground structures respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetic heterostructures with carbon nanotubes having multiple functionalities are fascinating materials which can be manipulated by means of an external magnetic field. In this paper we report our investigations on the synthesis and optical limiting properties of pristine cobalt nanotubes and high coercivity cobalt-in-carbon nanotubes (a new nanosystem where carbon nanotubes are filled with cobalt nanotubes). A general mobility assisted growth mechanism for the formation of one-dimensional nanostructures inside nanopores is verified in the case of carbon nanotubes. The open-aperture z-scan technique is employed for the optical limiting measurements in which nanosecond laser pulses at 532 nm have been used for optical excitation. Compared to the benchmark pristine carbon nanotubes these materials show an enhanced nonlinear optical absorption, and the nonlinear optical parameters calculated from the data show that these materials are efficient optical limiters. To the best of our knowledge this is the first report where the optical limiting properties of metal nanotubes are compared to those of carbon nanotubes

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SnS thin films were prepared using automated chemical spray pyrolysis (CSP) technique. Single-phase, p-type, stoichiometric, SnS films with direct band gap of 1.33 eV and having very high absorption coefficient (N105/cm) were deposited at substrate temperature of 375 °C. The role of substrate temperature in determining the optoelectronic and structural properties of SnS films was established and concentration ratios of anionic and cationic precursor solutions were optimized. n-type SnS samples were also prepared using CSP technique at the same substrate temperature of 375 °C, which facilitates sequential deposition of SnS homojunction. A comprehensive analysis of both types of films was done using x-ray diffraction, energy dispersive x-ray analysis, scanning electron microscopy, atomic force microscopy, optical absorption and electrical measurements. Deposition temperatures required for growth of other binary sulfide phases of tin such as SnS2, Sn2S3 were also determined