968 resultados para AS1020 mild steel alloy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A theoretical analysis is carried out to observe the influence of important flow parameters such as Nusselt number and Sherwood number on the tip speed of an equiaxed dendrite growing in a convecting alloy melt. The effect of thermal and solutal transfer at the interface due to convection is equated to an undercooling of the melt, and an expression is derived for this equivalent undercooling in terms of the flow Nusselt number and Sherwood number. Results for the equivalent undercooling are compared with corresponding numerical values obtained by performing simulations based on the enthalpy method. This method represents a relatively simple procedure to analyze the effects of melt convection on the growth rate of dendrites. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose-In the present work, a numerical method, based on the well established enthalpy technique, is developed to simulate the growth of binary alloy equiaxed dendrites in presence of melt convection. The paper aims to discuss these issues. Design/methodology/approach-The principle of volume-averaging is used to formulate the governing equations (mass, momentum, energy and species conservation) which are solved using a coupled explicit-implicit method. The velocity and pressure fields are obtained using a fully implicit finite volume approach whereas the energy and species conservation equations are solved explicitly to obtain the enthalpy and solute concentration fields. As a model problem, simulation of the growth of a single crystal in a two-dimensional cavity filled with an undercooled melt is performed. Findings-Comparison of the simulation results with available solutions obtained using level set method and the phase field method shows good agreement. The effects of melt flow on dendrite growth rate and solute distribution along the solid-liquid interface are studied. A faster growth rate of the upstream dendrite arm in case of binary alloys is observed, which can be attributed to the enhanced heat transfer due to convection as well as lower solute pile-up at the solid-liquid interface. Subsequently, the influence of thermal and solutal Peclet number and undercooling on the dendrite tip velocity is investigated. Originality/value-As the present enthalpy based microscopic solidification model with melt convection is based on a framework similar to popularly used enthalpy models at the macroscopic scale, it lays the foundation to develop effective multiscale solidification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nano-sized bimetallic dispersoids consisting of (Pb) and beta-(Sn) phases of eutectic composition (Pb26.1Sn73.9) embedded in aluminum and Al-Cu-Fe quasicrystalline matrices have been prepared by rapid solidification processing. The two phases, face centered cubic (Pb) and body center tetragonal, beta-(Sn) solid solution co-exist in all the embedded nanoparticles at room temperature. The phases bear crystallographic orientation relationship with the matrix. In situ TEM study has been carried out for the alloy particles to study the melting and the solidification behavior. The detailed microscopic observations indicate formation of a single-phase metastable fcc (Pb) in the nano-particles prior to the melting during heating. Solidification of these particles begins with nucleation of fcc (Pb), which phase separates into fcc (Pb) and beta-(Sn) lamellae in the solid state. In situ X-ray diffraction study is carried out to obtain lattice parameter of metastable fcc (Pb) and thereby an estimate of amount of Sn dissolved in the metastable (Pb) prior to the melting. The results are discussed in terms of a metastable phase diagram between fcc Pb and fcc Sn and invoking the size effect on the metastable phase diagram. The size factor is found to play a critical role in deciding the pathway of phase transformation as well as the extension of solid solubility of Sn in fcc (Pb) in the nano-particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents an experimental investigation on the rheology of A356 alloy in semisolid state using a high temperature Couette type viscometer. The molten liquid, resides in the annular space between the cylinders, is stirred and cooled continuously during experiments. The stirring results in fragmentation of dendrites which are transported into bulk liquid and form a semisolid slurry. The viscosity of the slurry is distinct in nature, which depends on microstructure of the suspended dendrites after coarsening. Hence, in the work, the variation of viscosity and microstructure is captured during cooling under different process parameters such as shear rate and cooling rate. Angular velocity of the inner cylinder and torque applied to stir the slurry are recorded to determine the apparent viscosity of the slurry. Temperature of the slurry is recorded to calculate the fraction of solids present in the slurry. For micrograph analysis, a vacuum quartz tube is used to remove the slurry-samples during experiments and they are quenched them in water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evolution of texture and concomitant grain refinement during Equal Channel Angular Pressing (ECAP) of Ti - 13Nb - 13Zr alloy has been presented. Sub-micron sized equiaxed grains with narrow grain size distribution could be achieved after eight pass at 873 K. A characteristic ECAP texture evolved in alpha phase till four passes while the evolution of characteristic ECAP texture in the beta phase could be observed only beyond the fourth pass. On increasing the deformation up to eight passes, the texture in alpha phase weakens while the beta phase shows an ideal ECAP texture. A weaker texture, low dislocation density and high crystallite size values in alpha phase suggest the occurrence of dynamic recrystallization. The absence of texture evolution in beta phase till four passes can be attributed to local lattice rotations. The characteristic ECAP texture in the eight pass deformed sample is attributed to delayed dynamic recrystallization in the beta phase. (C) 2013 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work, the effect of Cd on the microstructure, mechanical properties and general corrosion behaviour of AZ91C alloys was investigated. Addition of Cd was found not to be efficient in modifying/refining the microstructure or beta-phase. A morphology change in beta-phase from fine continuous precipitates to discontinuous beta-phase upon the addition of Cd was observed. A marginal increment in mechanical properties was observed. General corrosion behaviour was followed with weight loss measurements, potentiostatic polarisation studies and surface studies in 3.5% sodium chloride solution and 3.5% sodium chloride with 2% potassium dichromate solution. Cd addition deteriorated the corrosion behaviour of AZ91C. This behaviour was attributed to the formation of chunks of beta-phase upon the addition of Cd. AZ91C with refined beta-phase distribution, performed rather better in the NaCl solutions. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ni49.4Ti38.6Hf12 shape memory alloy has been characterized for structure, microstructure and transformation temperatures. The microstructure of the as-cast sample consists of B19' and R-phases, and (Ti,Hf)(2)Ni precipitate phase along the grain boundaries in the form of dendrites. The microstructure of the solution treated sample contains only B19' martensite phase, whereas a second heat treatment after solutionizing results in reappearance of the R-phase and the (Ti,Hf)(2)Ni grain boundary precipitate phase in the microstructure. A detailed microstructural examination shows the presence of precipitates having both coherent and incoherent interface with the matrix, the type of interface being dictated by the crystallographic orientation of the matrix phase. The present study shows that the (Ti,Hf)(2)Ni precipitates having coherent interface with the matrix, drive the formation of the R-phase in the microstructure. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The formation of surface oxide layer as well as compositional changes along the thickness for NiTi shape memory alloy thin films deposited by direct current magnetron sputtering at substrate temperature of 300 degrees C in the as-deposited condition as well as in the postannealed (at 600 degrees C) condition have been thoroughly studied by using secondary ion mass spectroscopy, x-ray photoelectron spectroscopy, and scanning transmission electron microscopy-energy dispersive x-ray spectroscopy techniques. Formation of titanium oxide (predominantly titanium dioxide) layer was observed in both as-deposited and postannealed NiTi films, although the oxide layer was much thinner (8 nm) in as-deposited condition. The depletion of Ti and enrichment of Ni below the oxide layer in postannealed films also resulted in the formation of a graded microstructure consisting of titanium oxide, Ni3Ti, and B2 NiTi. A uniform composition of B2 NiTi was obtained in the postannealed film only below a depth of 200-250 nm from the surface. Postannealed film also exhibited formation of a ternary silicide (NixTiySi) at the film-substrate interface, whereas no silicide was seen in the as-deposited film. The formation of silicide also caused a depletion of Ni in the film in a region similar to 250-300 nm just above the film substrate interface. (C) 2013 American Vacuum Society.