969 resultados para ARN interference


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The photoelectrode of Eosin-Y sensitised DSSC was modified by incorporating Au-nanoparticles to enhance the power conversion efficiency via scattering from surface plasmon polaritons. Size dependence of Au nanoparticle on conversion efficiency was performed in DSSC for the first time by varying the particle size from 20 to 94 nm. It was found that, the conversion efficiency is highly dependent on the size of the Au nanoparticles. For larger particles (>50 nm), the efficiency was found to be increased due to constructive interference between the transmitted and scattered waves from the Au nanoparticle while for smaller particles, the efficiency decreases due to destructive interference. Also a reduction in the V-oc was observed in general, due to the negative shifting of the TiO2 Fermi level on the adsorption of Au nanoparticle. This shift was negligible for larger particles. When 94 nm size particles were employed the conversion efficiency was doubled from 0.74% to 1.52%. This study points towards the application of the scattering effect of metal nanoparticle to enhance the conversion efficiency in DSSCs. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, the low temperature electrical conductivity and microwave absorption properties of carbon coated iron nanoparticles-polyvinyl chloride composite films are investigated for different filler fractions. The filler particles are prepared by the pyrolysis of ferrocene at 980 degrees C and embedded in polyvinyl chloride matrix. The high resolution transmission electron micrographs of the filler material have shown a 5 nm thin layer graphitic carbon covering over iron particles. The room temperature electrical conductivity of the composite film changes by 10 orders of magnitude with the increase of filler concentration. A percolation threshold of 2.2 and an electromagnetic interference shielding efficiency (EMI SE) of similar to 18.6 dB in 26.5-40 GHz range are observed for 50 wt% loading. The charge transport follows three dimensional variable range hopping conduction. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glassy carbon electrodes (GCE) and carbon paste electrodes (CPE) were modified with imidazole functionalized polyaniline with the aim to develop a sensor for lead (II) in both acidic and basic aqueous solution. The electrodes were characterized by cyclic voltammetry and differential pulse adsorptive stripping voltammetry. The limit of detections obtained with glassy carbon electrode and carbon paste electrode are 20 ng mL(-1) and 2 ng mL(-1) of lead ion, respectively. An interference study was carried out with Cd(II), As(III), Hg(II) and Co(II) ions. Cd(II) ions interfere significantly (peak overlap) and As(III) has a depressing effect on the lead signal. The influence of pH was investigated indicating that bare and modified GCE and CPE show optimum response at pH 4.0 +/- 0.05.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: In higher primates, during non-pregnant cycles, it is indisputable that circulating LH is essential for maintenance of corpus luteum (CL) function. On the other hand, during pregnancy, CL function gets rescued by the LH analogue, chorionic gonadotropin (CG). The molecular mechanisms involved in the control of luteal function during spontaneous luteolysis and rescue processes are not completely understood. Emerging evidence suggests that LH/CGR activation triggers proliferation and transformation of target cells by various signaling molecules as evident from studies demonstrating participation of Src family of tyrosine kinases (SFKs) and MAP kinases in hCG-mediated actions in Leydig cells. Since circulating LH concentration does not vary during luteal regression, it was hypothesized that decreased responsiveness of luteal cells to LH might occur due to changes in LH/CGR expression dynamics, modulation of SFKs or interference with steroid biosynthesis. Methods: Since, maintenance of structure and function of CL is dependent on the presence of functional LH/CGR its expression dynamics as well as mRNA and protein expressions of SFKs were determined throughout the luteal phase. Employing well characterized luteolysis and CL rescue animal models, activities of SFKs, cAMP phosphodiesterase (cAMP-PDE) and expression of SR-B1 (a membrane receptor associated with trafficking of cholesterol ester) were examined. Also, studies were carried out to investigate the mechanisms responsible for decline in progesterone biosynthesis in CL during the latter part of the non-pregnant cycle. Results and discussion: The decreased responsiveness of CL to LH during late luteal phase could not be accounted for by changes in LH/CGR mRNA levels, its transcript variants or protein. Results obtained employing model systems depicting different functional states of CL revealed increased activity of SFKs pSrc (Y-416)] and PDE as well as decreased expression of SR-B1correlating with initiation of spontaneous luteolysis. However, CG, by virtue of its heroic efforts, perhaps by inhibition of SFKs and PDE activation, prevents CL from undergoing regression during pregnancy. Conclusions: The results indicated participation of activated Src and increased activity of cAMP-PDE in the control of luteal function in vivo. That the exogenous hCG treatment caused decreased activation of Src and cAMP-PDE activity with increased circulating progesterone might explain the transient CL rescue that occurs during early pregnancy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Given a set of points P ⊆ R2, a conflict-free coloring of P w.r.t. rectangle ranges is an assignment of colors to points of P, such that each nonempty axisparallel rectangle T in the plane contains a point whose color is distinct from all other points in P ∩ T . This notion has been the subject of recent interest and is motivated by frequency assignment in wireless cellular networks: one naturally would like to minimize the number of frequencies (colors) assigned to base stations (points) such that within any range (for instance, rectangle), there is no interference. We show that any set of n points in R2 can be conflict-free colored with O(nβ∗+o(1)) colors in expected polynomial time, where β∗ = 3−√5 2 < 0.382.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The charge transport in sulfonated multi-wall carbon nanotube (sMWNT)-Nafion composite is reported. The scanning electron microscope images of the composite, at 1 and 10 wt % of sMWNT, show that the nanotubes are well dispersed in polymer matrix, with conductivity values of 0.005 and 3.2 S/cm, respectively; and the percolation threshold is nearly 0.42 wt. %. The exponent (∼0.25) of the temperature dependence of conductivity in both samples indicates Mott's variable range hopping (VRH) transport. The conductance in 1 wt. % sample increases by three orders of magnitude at high electric-fields, consistent with VRH model. The negative magnetoresistance in 10 wt. % sample is attributed to the forward interference scattering mechanism in VRH transport. The ac conductance in 1 wt. % sample is expressed by σ(ω)∝ωs, and the temperature dependence of s follows the correlated barrier hopping model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose a Riesz transform approach to the demodulation of digital holograms. The Riesz transform is a higher-dimensional extension of the Hilbert transform and is steerable to a desired orientation. Accurate demodulation of the hologram requires a reliable methodology by which quadrature-phase functions (or simply, quadratures) can be constructed. The Riesz transform, by itself, does not yield quadratures. However, one can start with the Riesz transform and construct the so-called vortex operator by employing the notion of quasi-eigenfunctions, and this approach results in accurate quadratures. The key advantage of using the vortex operator is that it effectively handles nonplanar fringes (interference patterns) and has the ability to compensate for the local orientation. Therefore, this method results in aberration-free holographic imaging even in the case when the wavefronts are not planar. We calibrate the method by estimating the orientation from a reference hologram, measured with an empty field of view. Demodulation results on synthesized planar as well as nonplanar fringe patterns show that the accuracy of demodulation is high. We also perform validation on real experimental measurements of Caenorhabditis elegans acquired with a digital holographic microscope. (c) 2012 Optical Society of America

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we consider low-complexity turbo equalization for multiple-input multiple-output (MIMO) cyclic prefixed single carrier (CPSC) systems in MIMO inter-symbol interference (ISI) channels characterized by large delay spreads. A low-complexity graph based equalization is carried out in the frequency domain. Because of the reduction in correlation among the noise samples that happens for large frame sizes and delay spreads in frequency domain processing, improved performance compared to time domain processing is shown to be achieved. This improved performance is attractive for equalization in severely delay spread ISI channels like ultrawideband channels and underwater acoustic channels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we employ message passing algorithms over graphical models to jointly detect and decode symbols transmitted over large multiple-input multiple-output (MIMO) channels with low density parity check (LDPC) coded bits. We adopt a factor graph based technique to integrate the detection and decoding operations. A Gaussian approximation of spatial interference is used for detection. This serves as a low complexity joint detection/decoding approach for large dimensional MIMO systems coded with LDPC codes of large block lengths. This joint processing achieves significantly better performance than the individual detection and decoding scheme.