990 resultados para ARGOS satellite-linked
Resumo:
During invasion and metastasis, cancer cells interact closely with the extracellular matrix molecules by attachment, degradation, and migration. We demonstrated previously the local degradation of fluorescently labeled gelatin matrix by cancer cells at invasive membrane protrusions, called invadopodia. Using the newly developed quantitative fluorescence-activated cell sorting-phagocytosis assay and image analysis of localized degradation of fluorescently labeled matrix, we document here that degradation and site- specific removal of cross-linked gelatin matrix is correlated with the extent of phagocytosis in human breast cancer cells. A higher phagocytic capacity is generally associated with increasing invasiveness, documented in other invasion and motility assays as well. Gelatin phagocytosis is time and cell density dependent, and it is mediated by the actin cytoskeleton. Most of the intracellular gelatin is routed to actively acidified vesicles, as demonstrated by the fluorescent colocalization of gelatin with acidic vesicles, indicating the intracellular degradation of the phagocytosed matrix in lysosomes. We show here that normal intracellular routing is blocked after treatment with acidification inhibitors. In addition, the need for partial proteolytic degradation of the matrix prior to phagocytosis is demonstrated by the inhibition of gelatin phagocytosis with different serine and metalloproteinase inhibitors and its stimulation by conditioned medium containing the matrix metalloproteinases MMP-2 and MMP-9. Our results demonstrate that phagocytosis of extracellular matrix is an inherent feature of breast tumor cells that correlates with and may even directly contribute to their invasive capacity. This assay is useful for screening and evaluating potential anti-invasive agents because it is fast, reproducible, and versatile.
Resumo:
The morphology of plasmonic nano-assemblies has a direct influence on optical properties, such as localised surface plasmon resonance (LSPR) and surface enhanced Raman scattering (SERS) intensity. Assemblies with core-satellite morphologies are of particular interest, because this morphology has a high density of hot-spots, while constraining the overall size. Herein, a simple method is reported for the self-assembly of gold NPs nano-assemblies with a core-satellite morphology, which was mediated by hyperbranched polymer (HBP) linkers. The HBP linkers have repeat units that do not interact strongly with gold NPs, but have multiple end-groups that specifically interact with the gold NPs and act as anchoring points resulting in nano-assemblies with a large (~48 nm) core surrounded by smaller (~15 nm) satellites. It was possible to control the number of satellites in an assembly which allowed optical parameters such as SPR maxima and the SERS intensity to be tuned. These results were found to be consistent with finite-difference time domain (FDTD) simulations. Furthermore, the multiplexing of the nano-assemblies with a series of Raman tag molecules was demonstrated, without an observable signal arising from the HBP linker after tagging. Such plasmonic nano-assemblies could potentially serve as efficient SERS based diagnostics or biomedical imaging agents in nanomedicine.
Resumo:
The development of global navigation satellite systems (GNSS) provides a solution of many applied problems with increasingly higher quality and accuracy nowadays. Researches that are carried out by the Bavarian Academy of Sciences and Humanities in Munich (BAW) in the field of airborne gravimetry are based on sophisticated data processing from high frequency GNSS receiver for kinematic aircraft positioning. Applied algorithms for inertial acceleration determination are based on the high sampling rate (50Hz) and on reducing of such factors as ionosphere scintillation and multipath at aircraft /antenna near field effects. The quality of the GNSS derived kinematic height are studied also by intercomparison with lift height variations collected by a precise high sampling rate vertical scale [1]. This work is aimed at the ways of more accurate determination of mini-aircraft altitude by means of high frequency GNSS receivers, in particular by considering their dynamic behaviour.
Resumo:
The effect of temperature on childhood pneumonia in subtropical regions is largely unknown so far. This study examined the impact of temperature on childhood pneumonia in Brisbane, Australia. A quasi-Poisson generalized linear model combined with a distributed lag non linear model was used to quantify the main effect of temperature on emergency department visits (EDVs) for childhood pneumonia in Brisbane from 2001 to 2010. The model residuals were checked to identify added effects due to heat waves or cold spells. Both high and low temperatures were associated with an increase in EDVs for childhood pneumonia. Children aged 2–5 years, and female children were particularly vulnerable to the impacts of heat and cold, and Indigenous children were sensitive to heat. Heat waves and cold spells had significant added effects on childhood pneumonia, and the magnitude of these effects increased with intensity and duration. There were changes over time in both the main and added effects of temperature on childhood pneumonia. Children, especially those female and Indigenous, should be particularly protected from extreme temperatures. Future development of early warning systems should take the change over time in the impact of temperature on children’s health into account.
Resumo:
A quasi-Poisson generalized linear model combined with a distributed lag non-linear model was used to quantify the main effect of temperature on emergency department visits (EDVs) for childhood diarrhea in Brisbane from 2001 to 2010. Residual of the model was checked to examine whether there was an added effect due to heat waves. The change over time in temperature-diarrhea relation was also assessed. Both low and high temperatures had significant impact on childhood diarrhea. Heat waves had an added effect on childhood diarrhea, and this effect increased with intensity and duration of heat waves. There was a decreasing trend in the main effect of heat on childhood diarrhea in Brisbane across the study period. Brisbane children appeared to have gradually adapted to mild heat, but they are still very sensitive to persistent extreme heat. Development of future heat alert systems should take the change in temperature-diarrhea relation over time into account.
Resumo:
Artemisinin (ART) based combination therapy (ACT) is used as the first line treatment of uncomplicated falciparum malaria in over 100 countries and is the cornerstone of malaria control and elimination programs in these areas. However, despite the high potency and rapid parasite killing action of ART derivatives there is a high rate of recrudescence associated with ART monotherapy and recrudescence is not uncommon even when ACT is used. Compounding this problem are reports that some parasites in Cambodia, a known foci of drug resistance, have decreased in vivo sensitivity to ART. This raises serious concerns for the development of ART resistance in the field even though no major phenotypic and genotypic changes have yet been identified in these parasites. In this article we review available data on the characteristics of ART, its effects on Plasmodium falciparum parasites and present a hypothesis to explain the high rate of recrudescence associated with this potent class of drugs and the current enigma surrounding ART resistance.
Resumo:
Approximately half of prostate cancers (PCa) carry TMPRSS2-ERG translocations; however, the clinical impact of this genomic alteration remains enigmatic. Expression of v-ets erythroblastosis virus E26 oncogene like (avian) gene (ERG) promotes prostatic epithelial dysplasia in transgenic mice and acquisition of epithelial-to-mesenchymal transition (EMT) characteristics in human prostatic epithelial cells (PrECs). To explore whether ERG-induced EMT in PrECs was associated with therapeutically targetable transformation characteristics, we established stable populations of BPH-1, PNT1B and RWPE-1 immortalized human PrEC lines that constitutively express flag-tagged ERG3 (fERG). All fERG-expressing populations exhibited characteristics of in vitro and in vivo transformation. Microarray analysis revealed >2000 commonly dysregulated genes in the fERG-PrEC lines. Functional analysis revealed evidence that fERG cells underwent EMT and acquired invasive characteristics. The fERG-induced EMT transcript signature was exemplified by suppressed expression of E-cadherin and keratins 5, 8, 14 and 18; elevated expression of N-cadherin, N-cadherin 2 and vimentin, and of the EMT transcriptional regulators Snail, Zeb1 and Zeb2, and lymphoid enhancer-binding factor-1 (LEF-1). In BPH-1 and RWPE-1-fERG cells, fERG expression is correlated with increased expression of integrin-linked kinase (ILK) and its downstream effectors Snail and LEF-1. Interfering RNA suppression of ERG decreased expression of ILK, Snail and LEF-1, whereas small interfering RNA suppression of ILK did not alter fERG expression. Interfering RNA suppression of ERG or ILK impaired fERG-PrEC Matrigel invasion. Treating fERG-BPH-1 cells with the small molecule ILK inhibitor, QLT-0267, resulted in dose-dependent suppression of Snail and LEF-1 expression, Matrigel invasion and reversion of anchorage-independent growth. These results suggest that ILK is a therapeutically targetable mediator of ERG-induced EMT and transformation in PCa.
Resumo:
Land-use regression (LUR) is a technique that can improve the accuracy of air pollution exposure assessment in epidemiological studies. Most LUR models are developed for single cities, which places limitations on their applicability to other locations. We sought to develop a model to predict nitrogen dioxide (NO2) concentrations with national coverage of Australia by using satellite observations of tropospheric NO2 columns combined with other predictor variables. We used a generalised estimating equation (GEE) model to predict annual and monthly average ambient NO2 concentrations measured by a national monitoring network from 2006 through 2011. The best annual model explained 81% of spatial variation in NO2 (absolute RMS error=1.4 ppb), while the best monthly model explained 76% (absolute RMS error=1.9 ppb). We applied our models to predict NO2 concentrations at the ~350,000 census mesh blocks across the country (a mesh block is the smallest spatial unit in the Australian census). National population-weighted average concentrations ranged from 7.3 ppb (2006) to 6.3 ppb (2011). We found that a simple approach using tropospheric NO2 column data yielded models with slightly better predictive ability than those produced using a more involved approach that required simulation of surface-to-column ratios. The models were capable of capturing within-urban variability in NO2, and offer the ability to estimate ambient NO2 concentrations at monthly and annual time scales across Australia from 2006–2011. We are making our model predictions freely available for research.
Resumo:
AIM: To assess the cost-effectiveness of an automated telephone-linked care intervention, Australian TLC Diabetes, delivered over 6 months to patients with established Type 2 diabetes mellitus and high glycated haemoglobin level, compared to usual care. METHODS: A Markov model was designed to synthesize data from a randomized controlled trial of TLC Diabetes (n=120) and other published evidence. The 5-year model consisted of three health states related to glycaemic control: 'sub-optimal' HbA1c ≥58mmol/mol (7.5%); 'average' ≥48-57mmol/mol (6.5-7.4%) and 'optimal' <48mmol/mol (6.5%) and a fourth state 'all-cause death'. Key outcomes of the model include discounted health system costs and quality-adjusted life years (QALYS) using SF-6D utility weights. Univariate and probabilistic sensitivity analyses were undertaken. RESULTS: Annual medication costs for the intervention group were lower than usual care [Intervention: £1076 (95%CI: £947, £1206) versus usual care £1271 (95%CI: £1115, £1428) p=0.052]. The estimated mean cost for intervention group participants over five years, including the intervention cost, was £17,152 versus £17,835 for the usual care group. The corresponding mean QALYs were 3.381 (SD 0.40) for the intervention group and 3.377 (SD 0.41) for the usual care group. Results were sensitive to the model duration, utility values and medication costs. CONCLUSION: The Australian TLC Diabetes intervention was a low-cost investment for individuals with established diabetes and may result in medication cost-savings to the health system. Although QALYs were similar between groups, other benefits arising from the intervention should also be considered when determining the overall value of this strategy.
Resumo:
This article considers the risk of disclosure in linked databases when statistical analysis of micro-data is permitted. The risk of disclosure needs to be balanced against the utility of the linked data. The current work specifically considers the disclosure risks in permitting regression analysis to be performed on linked data. A new attack based on partitioning of the database is presented.
Resumo:
Repeatable and accurate seagrass mapping is required for understanding seagrass ecology and supporting management decisions. For shallow (< 5 m) seagrass habitats, these maps can be created by integrating high spatial resolution imagery with field survey data. Field survey data for seagrass is often collected via snorkelling or diving. However, these methods are limited by environmental and safety considerations. Autonomous Underwater Vehicles (AUVs) are used increasingly to collect field data for habitat mapping, albeit mostly in deeper waters (>20 m). Here we demonstrate and evaluate the use and potential advantages of AUV field data collection for calibration and validation of seagrass habitat mapping of shallow waters (< 5 m), from multispectral satellite imagery. The study was conducted in the seagrass habitats of the Eastern Banks (142 km2), Moreton Bay, Australia. In the field, georeferenced photos of the seagrass were collected along transects via snorkelling or an AUV. Photos from both collection methods were analysed manually for seagrass species composition and then used as calibration and validation data to map seagrass using an established semi-automated object based mapping routine. A comparison of the relative advantages and disadvantages of AUV and snorkeller collected field data sets and their influence on the mapping routine was conducted. AUV data collection was more consistent, repeatable and safer in comparison to snorkeller transects. Inclusion of deeper water AUV data resulted in mapping of a larger extent of seagrass (~7 km2, 5 % of study area) in the deeper waters of the site. Although overall map accuracies did not differ considerably, inclusion of the AUV data from deeper water transects corrected errors in seagrass mapped at depths to 5 m, but where the bottom is visible on satellite imagery. Our results demonstrate that further development of AUV technology is justified for the monitoring of seagrass habitats in ongoing management programs.
Resumo:
This work examined a new method of detecting small water filled cracks in underground insulation ('water trees') using data from commecially available non-destructive testing equipment. A testing facility was constructed and a computer simulation of the insulation designed in order to test the proposed ageing factor - the degree of non-linearity. This was a large industry-backed project involving an ARC linkage grant, Ergon Energy and the University of Queensland, as well as the Queensland University of Technology.