1000 resultados para ARCHEAN MOLECULAR FOSSILS
Resumo:
A hallmark of behavior is that animals respond to environmental change by switching from one behavioral state to another. However, information on the molecular underpinnings of these behavioral shifts and how they are mediated by the environment is lacking. The ant Pheidole pallidula with its morphologically and behaviorally distinct major and minor workers is an ideal system to investigate behavioral shifts. The physically larger majors are predisposed to defend the ant nest, whereas the smaller minors are the foragers. Despite this predisposition, majors are able to shift to foraging according to the needs of the colony. We show that the ant foraging (ppfor) gene, which encodes a cGMP-dependent protein kinase (PKG), mediates this shift. Majors have higher brain PKG activities than minors, and the spatial distribution of the PPFOR protein differs in these workers. Specifically, majors express the PPFOR protein in 5 cells in the anterior face of the ant brain, whereas minors do not. Environmental manipulations show that PKG is lower in the presence of a foraging stimulus and higher when defense is required. Finally, pharmacological activation of PKG increases defense and reduces foraging behavior. Thus, PKG signaling plays a critical role in P. pallidula behavioral shifts.
Resumo:
Host-pathogen interactions are a major evolutionary force promoting local adaptation. Genes of the major histocompatibility complex (MHC) represent unique candidates to investigate evolutionary processes driving local adaptation to parasite communities. The present study aimed at identifying the relative roles of neutral and adaptive processes driving the evolution of MHC class IIB (MHCIIB) genes in natural populations of European minnows (Phoxinus phoxinus). To this end, we isolated and genotyped exon 2 of two MHCIIB gene duplicates (DAB1 and DAB3) and 1665 amplified fragment length polymorphism (AFLP) markers in nine populations, and characterized local bacterial communities by 16S rDNA barcoding using 454 amplicon sequencing. Both MHCIIB loci exhibited signs of historical balancing selection. Whereas genetic differentiation exceeded that of neutral markers at both loci, the populations' genetic diversities were positively correlated with local pathogen diversities only at DAB3. Overall, our results suggest pathogen-mediated local adaptation in European minnows at both MHCIIB loci. While at DAB1 selection appears to favor different alleles among populations, this is only partially the case in DAB3, which appears to be locally adapted to pathogen communities in terms of genetic diversity. These results provide new insights into the importance of host-pathogen interactions in driving local adaptation in the European minnow, and highlight that the importance of adaptive processes driving MHCIIB gene evolution may differ among duplicates within species, presumably as a consequence of alternative selective regimes or different genomic context.
Fenofibrate: a new treatment for diabetic retinopathy. Molecular mechanisms and future perspectives.
Resumo:
Despite improving standards of care, people with diabetes remain at risk of development and progression of diabetic retinopathy (DR) and visual impairment. Identifying novel therapeutic approaches, preferably targeting more than one pathogenic pathway in DR, and at an earlier stage of disease, is attractive. There is now consistent evidence from two major trials, the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study and the Action to Control Cardiovascular Risk in Diabetes Eye (ACCORD-Eye) study, totalling 11,388 people with type 2 diabetes (5,701 treated with fenofibrate) that fenofibrate reduces the risk of development and progression of DR. Therefore, fenofibrate may be considered a preventive strategy for patients without DR or early intervention strategy for those with mild DR. A number of putative therapeutic mechanisms for fenofibrate, both dependent and independent of lipids, have been proposed. A deeper understanding of the mode of action of fenofibrate will further help to define how best to use fenofibrate clinically as an adjunct to current management of DR.
Resumo:
Background Geleophysic dysplasia (GD, OMIM 231050) is an autosomal recessive disorder characterised by short stature, small hands and feet, stiff joints, and thick skin. Patients often present with a progressive cardiac valvular disease which can lead to an early death. In a previous study including six GD families, we have mapped the disease gene on chromosome 9q34.2 and identified mutations in the A Disintegrin And Metalloproteinase with Thrombospondin repeats-like 2 gene (ADAMTSL2). Methods Following this study, we have collected the samples of 30 additional GD families, including 33 patients and identified ADAMTSL2 mutations in 14/33 patients, comprising 13 novel mutations. The absence of mutation in 19 patients prompted us to compare the two groups of GD patients, namely group 1, patients with ADAMTSL2 mutations (n=20, also including the 6 patients from our previous study), and group 2, patients without ADAMTSL2 mutations (n=19). Results The main discriminating features were facial dysmorphism and tip-toe walking, which were almost constantly observed in group 1. No differences were found concerning heart involvement, skin thickness, recurrent respiratory and ear infections, bronchopulmonary insufficiency, laryngo-tracheal stenosis, deafness, and radiographic features. Conclusions It is concluded that GD is a genetically heterogeneous condition. Ongoing studies will hopefully lead to the identification of another disease gene.
Resumo:
External stresses or mutations may cause labile proteins to lose their distinct native conformations and seek alternatively stable aggregated forms. Molecular chaperones that specifically act on protein aggregates were used here as a tool to address the biochemical nature of stable homo- and hetero-aggregates from non-pathogenic proteins formed by heat-stress. Confirmed by sedimentation and activity measurements, chaperones demonstrated that a single polypeptide chain can form different species of aggregates, depending on the denaturing conditions. Indicative of a cascade reaction, sub-stoichiometric amounts of one fast-aggregating protein strongly accelerated the conversion of another soluble, slow-aggregating protein into insoluble, chaperone-resistant aggregates. Chaperones strongly inhibited seed-induced protein aggregation, suggesting that they can prevent and cure proteinaceous infectious behavior in homo- and hetero-aggregates from common and disease-associated proteins in the cell.
Resumo:
Fragile X-associated tremor/ataxia syndrome (FXTAS) is an adult-onset neurodegenerative disorder associated with premutation alleles of the fragile X mental retardation 1 (FMR1) gene. Approximately 40% of older male premutation carriers, and a smaller proportion of females, are affected by FXTAS; due to the lower penetrance the characterization of the disorder in females is much less detailed. Core clinical features of FXTAS include intention tremor, cerebellar gait ataxia and frequently parkinsonism, autonomic dysfunction and cognitive deficits progressing to dementia in up to 50% of males. In this study, we report the clinical, molecular and neuropathological findings of eight female premutation carriers. Significantly, four of these women had dementia; of the four, three had FXTAS plus dementia. Post-mortem examination showed the presence of intranuclear inclusions in all eight cases, which included one asymptomatic premutation carrier who died from cancer. Among the four subjects with dementia, three had sufficient number of cortical amyloid plaques and neurofibrillary tangles to make Alzheimer's disease a highly likely cause of dementia and a fourth case had dementia with cortical Lewy bodies. Dementia appears to be more common than originally reported in females with FXTAS. Although further studies are required, our observation suggests that in a portion of FXTAS cases there is Alzheimer pathology and perhaps a synergistic effect on the progression of the disease may occur.
Resumo:
Synaptic plasticity involves a complex molecular machinery with various protein interactions but it is not yet clear how its components give rise to the different aspects of synaptic plasticity. Here we ask whether it is possible to mathematically model synaptic plasticity by making use of known substances only. We present a model of a multistable biochemical reaction system and use it to simulate the plasticity of synaptic transmission in long-term potentiation (LTP) or long-term depression (LTD) after repeated excitation of the synapse. According to our model, we can distinguish between two phases: first, a "viscosity" phase after the first excitation, the effects of which like the activation of NMDA receptors and CaMKII fade out in the absence of further excitations. Second, a "plasticity" phase actuated by an identical subsequent excitation that follows after a short time interval and causes the temporarily altered concentrations of AMPA subunits in the postsynaptic membrane to be stabilized. We show that positive feedback is the crucial element in the core chemical reaction, i.e. the activation of the short-tail AMPA subunit by NEM-sensitive factor, which allows generating multiple stable equilibria. Three stable equilibria are related to LTP, LTD and a third unfixed state called ACTIVE. Our mathematical approach shows that modeling synaptic multistability is possible by making use of known substances like NMDA and AMPA receptors, NEM-sensitive factor, glutamate, CaMKII and brain-derived neurotrophic factor. Furthermore, we could show that the heteromeric combination of short- and long-tail AMPA receptor subunits fulfills the function of a memory tag.
Resumo:
More than 246 million individuals worldwide are affected by diabetes mellitus (DM) and this number is rapidly increasing (http://www.eatlas. idf.org). 90% of all diabetic patients have type 2 DM, which is characterized by insulin resistance and b-cell dysfunction. Even though diabetic peripheral neuropathy (DPN) is the major chronic complication of DM its underlying pathophysiological mechanisms still remain unknown. To get more insight into the DPN associated with type 2 DM, we characterized the rodent model of this form of diabetes, the db/db mice. The progression of pathological changes in db/db mice mimics the ones observed in humans: increase of the body weight, insulin insensitivity, elevated blood glucose level and reduction in nerve conduction velocity (NCV). Decreased NCV, present in many peripheral neuropathies, is usually associated with demyelination of peripheral nerves. However, our detailed analysis of the sciatic nerves of db/db mice exposed for 4 months to hyperglycemia, failed to reveal any signs of demyelination in spite of significantly reduced NCV in these animals. We therefore currently focus our analysis on the structure of Nodes of Ranvier, regions of intense axo-glial interactions, which also play a crucial role in rapid saltatory impulse conduction. In addition we are also evaluating molecular changes in somas of sensory neurons projecting through sciatic nerve, which are localized in the dorsal root ganglia. We hope that the combination of these approaches will shed light on molecular alterations leading to DPN as a consequence of type 2 DM.
Resumo:
The molecular diagnosis of retinal dystrophies (RD) is difficult because of genetic and clinical heterogeneity. Previously, the molecular screening of genes was done one by one, sometimes in a scheme based on the frequency of sequence variants and the number of exons/length of the candidate genes. Payment for these procedures was complicated and the sequential billing of several genes created endless paperwork. We therefore evaluated the costs of generating and sequencing a hybridization-based DNA library enriched for the 64 most frequently mutated genes in RD, called IROme, and compared them to the costs of amplifying and sequencing these genes by the Sanger method. The production cost generated by the high-throughput (HT) sequencing of IROme was established at CHF 2,875.75 per case. Sanger sequencing of the same exons cost CHF 69,399.02. Turnaround time of the analysis was 3 days for IROme. For Sanger sequencing, it could only be estimated, as we never sequenced all 64 genes in one single patient. Sale cost for IROme calculated on the basis of the sale cost of one exon by Sanger sequencing is CHF 8,445.88, which corresponds to the sale price of 40 exons. In conclusion, IROme is cheaper and faster than Sanger sequencing and therefore represents a sound approach for the diagnosis of RD, both scientifically and economically. As a drop in the costs of HT sequencing is anticipated, target resequencing might become the new gold standard in the molecular diagnosis of RD.
Resumo:
Elucidating the molecular and neural basis of complex social behaviors such as communal living, division of labor and warfare requires model organisms that exhibit these multi-faceted behavioral phenotypes. Social insects, such as ants, bees, wasps and termites, are attractive models to address this problem, with rich ecological and ethological foundations. However, their atypical systems of reproduction have hindered application of classical genetic approaches. In this review, we discuss how recent advances in social insect genomics, transcriptomics, and functional manipulations have enhanced our ability to observe and perturb gene expression, physiology and behavior in these species. Such developments begin to provide an integrated view of the molecular and cellular underpinnings of complex social behavior.
Resumo:
Firstly discovered in rete testis fluid, clusterin is a glycoprotein present in most of the other biological fluids. Several isoforms of clusterin are encoded from a single gene located on chromosome 8 in human species. Among the different isoforms, the secreted form of clusterin is expressed by a variety of tissues, including the nervous system under normal conditions. This form is presumed to play an anti-apoptotic role and seems to be a major determinant in cell survival and neuroplasticity after stroke. In animal models of this pathology, both neuronal and astroglial subpopulations express high levels of clusterin early after the ischemic damage. Recent lines of evidence point also to its possible involvement in neurodegenerative disorders. It is thought that in Alzheimer's disease the association between amyloidogenic peptides and clusterin contributes to limit Aβ species misfolding and facilitates their clearance from the extracellular space. Thus, intercellular and intracellular factors that modulate local clusterin expression in the nervous system may represent potent targets for neurodegenerative disease therapies. In this review we provide a critical overview of the most recent data on the involvement of clusterin in neurodegenerative diseases with special reference to their putative clinical relevance.
Resumo:
La determinació de Cr(VI) en l’aigua per espectroscòpia d’absorció molecular a la regió visible es realitza mitjançant una tècnica colorimètrica per reacció amb un reactiu cromogènic. El Cr(VI) reacciona amb la 1,5-Difenilcarbacida formant un complex de color vermell-violeta que absorbeix radiació a la longitud d’ona de 540 nm. Tradicionalment, la determinació de Cr(VI) per colorimetria es realitza de forma manual i discontínua, essent un mètode repetitiu i laboriós que té implícit un cost de mà d’obra i de temps considerable, tant pel que es refereix a la preparació de les mostres i dels patrons, com al propi acte de la mesura a l’aparell. Aquest projecte s’ha realitzat sota la idea que les determinacions de Cr(VI) per colorimetria, poden complir els requisits bàsics operacionals dels mètodes d’anàlisi de flux en continu. Partint d’aquesta base, s’ha desenvolupat un nou equip de mesura per realitzar les determinacions de Cr(VI) amb una presa de mostres automatitzada, i un règim de treball en continu. L’objectiu d’aquest projecte és la posta a punt, automatització, i validació de la tècnica d’anàlisi instrumental de determinació de crom (VI) en continu per espectroscòpia molecular visible
Resumo:
Background The prognostic potential of individual clinical and molecular parameters in stage II/III colon cancer has been investigated, but a thorough multivariable assessment of their relative impact is missing. Methods Tumors from patients (N = 1404) in the PETACC3 adjuvant chemotherapy trial were examined for BRAF and KRAS mutations, microsatellite instability (MSI), chromosome 18q loss of heterozygosity (18qLOH), and SMAD4 expression. Their importance in predicting relapse-free survival (RFS) and overall survival (OS) was assessed by Kaplan-Meier analyses, Cox regression models, and recursive partitioning trees. All statistical tests were two-sided. Results MSI-high status and SMAD4 focal loss of expression were identified as independent prognostic factors with better RFS (hazard ratio [HR] of recurrence = 0.54, 95% CI = 0.37 to 0.81, P = .003) and OS (HR of death = 0.43, 95% CI = 0.27 to 0.70, P = .001) for MSI-high status and worse RFS (HR = 1.47, 95% CI = 1.19 to 1.81, P < .001) and OS (HR = 1.58, 95% CI = 1.23 to 2.01, P < .001) for SMAD4 loss. 18qLOH did not have any prognostic value in RFS or OS. Recursive partitioning identified refinements of TNM into new clinically interesting prognostic subgroups. Notably, T3N1 tumors with MSI-high status and retained SMAD4 expression had outcomes similar to stage II disease. Conclusions Concomitant assessment of molecular and clinical markers in multivariable analysis is essential to confirm or refute their independent prognostic value. Including molecular markers with independent prognostic value might allow more accurate prediction of prognosis than TNM staging alone.
Resumo:
Traditionally, the Drosophila guarani species group has been divided into two subgroups: the guarani and the guaramunu subgroups. Two, out of the four species included in this research, are members of the guarani subgroup (D. ornatifrons Duda, 1927 and D. subbadia Paterson & Mainland, 1943) and two are included in the guaramunu subgroup (D. maculifrons Duda, 1927 and D. griseolineata Duda, 1927). However, some authors have suggested that D. maculifrons and D. griseolineata are much closer to some species of the Drosophila tripunctata group than to some of the species of the guarani group. To add new data to the matter under dispute, Polyacrylamide Gel Eletrophoresis (PAGE-SDS) was used for the analysis and comparison of protein composition and Random Amplified Polymorphic DNA (RAPD) analysis to find differences in genomic DNA, in addition to the analysis of quantitative morphological characters previously described. Analysis of PAGE-SDS results in a dendrogram that pointed out D. subbadia as being the most distant within the Drosophila guarani group. However, these results were not supported either by RAPD analysis or by the analysis of continuous morphological characters, which supplied the clustering of D. subbadia with D. ornatifrons. Although our data give strong support to the clustering of D. subbadia and D. ornatifrons, none of the dendrograms provided a clade comprising D. maculifrons and D. griseolineata. Thus, this research does not support the traditional subdivision of the D. guarani group into those two subgroups.
Resumo:
Calcium-dependent exocytosis of synaptic vesicles mediates the release of neurotransmitters. Important proteins in this process have been identified such as the SNAREs, synaptotagmins, complexins, Munc18 and Munc13. Structural and functional studies have yielded a wealth of information about the physiological role of these proteins. However, it has been surprisingly difficult to arrive at a unified picture of the molecular sequence of events from vesicle docking to calcium-triggered membrane fusion. Using mainly a biochemical and biophysical perspective, we briefly survey the molecular mechanisms in an attempt to functionally integrate the key proteins into the emerging picture of the neuronal fusion machine.