996 resultados para AQUEOUS BIPHASIC CATALYSIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we report a viable route to fibrillar micelles and entrapped vesicles in aqueous solutions. Nanofibrillar micelles and entrapped vesicles were prepared from complexes of a biodegradable block copolymer poly(ethylene oxide)-block-poly(lactide) (PEO-b-PLA) and a polyelectrolyte poly(acrylic acid) (PAA) in aqueous media and directly visualized using cryogenic transmission electron microscopy (cryo-TEM). The self-assembly and the morphological changes in the complexes were induced by the addition of PAA/water solution into the PEO-b-PLA in tetrahydrofuran followed by dialysis against water. A variety of morphologies including spherical wormlike and fibrillar micelles, and both unilamellar and entrapped vesicles, were observed, depending on the composition, complementary binding sites of PAA and PEO, and the change in the interfacial energy. Increasing the water content in each [AA]/[EO] ratio led to a morphological transition from spheres to vesicles, displaying both the composition- and dilution-dependent micellar-to-vesicular morphological transitions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atomistic simulations of molecular adsorption onto inorganic substrates under aqueous conditions can be used to guide the rational design of new materials, fabricated using biomimetic methods. The success of such work depends critically on the model used. Here, we investigate the impact of using a rigid structural model of the (0 1 1) ?-quartz surface, over a fully flexible model, on the calculated free energy change in the adsorption of a single molecule of benzene (a simple analogue of the amino acid phenylalanine) from liquid water. Subtle differences in the mobility of the adsorbate close to the surface result in the free energy of adsorption being overestimated by the rigid model, relative to the fully flexible case. Moreover, we find that the distribution of bound configurations of the adsorbate at their respective free energy minima is different between the two models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, a functionalized zeolites column was developed to remove ammonia nitrogen with a low concentration (50 mg/L) from aqueous solution. The absorption properties and regeneration capacity were investigated. Through breakthrough and elution curve for dynamic adsorption, we found the wastewater with 50 mg/L ammonia nitrogen took 7 h to flow 10 g modified zeolites column with diameters of 24 to 64 meshes at a flow rate of 2 mL/min. The saturated extent of adsorption was up to 7.95 mg/g, and the saturated adsorption time was 22 h. The process of dynamic adsorption could be fitted by the Thomas Model. The regeneration ability was optimized by 0.1 M Na2CO3 as a regenerant. With excellent absorption ability for removing ammonia nitrogen with a low concentration, the functionalized zeolites could be potentially used a high-performance adsorbent for removing ammonia nitrogen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To fully harness the enormous potential offered by interfaces between graphitic nanostructures and biomolecules, detailed connections between adsorbed conformations and adsorption behaviour are needed. To elucidate these links, a key approach, in partnership with experimental techniques, is molecular simulation. For this, a force-field (FF) that can appropriately capture the relevant physics and chemistry of these complex bio-interfaces, while allowing extensive conformational sampling, and also supporting inter-operability with known biological FFs, is a pivotal requirement. Here, we present and apply such a force-field, GRAPPA, designed to work with the CHARMM FF. GRAPPA is an efficiently implemented polarisable force-field, informed by extensive plane-wave DFT calculations using the revPBE-vdW-DF functional. GRAPPA adequately recovers the spatial and orientational structuring of the aqueous interface of graphene and carbon nanotubes, compared with more sophisticated approaches. We apply GRAPPA to determine the free energy of adsorption for a range of amino acids, identifying Trp, Tyr and Arg to have the strongest binding affinity and Asp to be a weak binder. The GRAPPA FF can be readily incorporated into mainstream simulation packages, and will enable large-scale polarisable biointerfacial simulations at graphitic interfaces, that will aid the development of biomolecule-mediated, solution-based graphene processing and self-assembly strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the structure of the electrical double layer, determined from molecular dynamics simulations, for a range of saline solutions (NaCl, KCl, MgCl2 and CaCl2) at both 0.16 and 0.60molkg(-1) on different facets of the gold and silver aqueous interfaces. We consider the Au/Ag(111), native Au/Ag(100) and reconstructed Au(100)(5×1) facets. For a given combination of metallic surface and facet, some variations in density profile are apparent across the different cations in solution, with the corresponding chloride counterion profiles remaining broadly invariant. All density profiles at the higher concentration are predicted to be very similar to their low-concentration counterparts. We find that each electrolyte responds differently to the different metallic surface and facets, particularly those of the divalent metal ions. Our findings reveal marked differences in density profiles between facets for a given metallic interface for both Mg(2+) and Ca(2+), with Na(+) and K(+) showing much less distinction. Mg(2+) was the only ion for which we find evidence of materials-dependent differences in interfacial solution structuring between the Ag and Au.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite the extensive utilization of biomolecule-titania interfaces, biomolecular recognition and interactions at the aqueous titania interface remain far from being fully understood. Here, atomistic molecular dynamics simulations, in partnership with metadynamics, are used to calculate the free energy of adsorption of different amino acid side chain analogues at the negatively-charged aqueous rutile TiO2 (110) interface, under conditions corresponding with neutral pH. Our calculations predict that charged amino acid analogues have a relatively high affinity to the titania surface, with the arginine analogue predicted to be the strongest binder. Interactions between uncharged amino acid analogues and titania are found to be repulsive or weak at best. All of the residues that bound to the negatively-charged interface show a relatively stronger adsorption compared with the charge-neutral interface, including the negatively-charged analogue. Of the analogues that are found to bind to the titania surface, the rank ordering of the binding affinities is predicted to be "arginine" > "lysine" ≈ aspartic acid > "serine". This is the same ordering as was found previously for the charge-neutral aqueous titania interface. Our results show very good agreement with available experimental data and can provide a baseline for the interpretation of peptide-TiO2 adsorption data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the most common means of gold nanoparticle (AuNP) biofunctionalization involves the manipulation of precursor citrate-capped AuNPs via ligand displacement. However, the molecular-level structural characteristics of the citrate overlayer adsorbed at the aqueous Au interface at neutral pH remain largely unknown. Access to atomistic-scale details of these interfaces will contribute much needed insight into how AuNPs can be manipulated and exploited in aqueous solution. Here, the structures of such citrate overlayers adsorbed at the aqueous Au(111) interface at pH 7 are predicted and characterized using atomistic molecular dynamics simulations, for a range of citrate surface densities. We find that the overlayers are disordered in the surface density range considered, and that many of their key characteristics are invariant with surface density. In particular, we predict the overlayers to have 3-D, rather than 2-D, morphologies, with the anions closest to the gold surface being oriented with their carboxylate groups pointing away from the surface. We predict both striped and island morphologies for our overlayers, depending on the citrate surface density, and in all cases we find bare patches of the gold surface are present. Our simulations suggest that both citrate-gold adsorption and citrate-counterion pairing contribute to the stability of these citrate overlayer morphologies. We also calculate the free energy of adsorption at the aqueous Au(111) interface of a single citrate molecule, and compare this with the corresponding value for a single arginine molecule. These findings enable us to predict the conditions under which ligand displacement of surface-adsorbed citrate by arginine may take place. Our findings represent the first steps toward elucidating a more elaborate, detailed atomistic-scale model relating to the biofunctionalization of citrate-capped AuNPs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The homogeneous and stable dispersion of carbon nanotubes (CNTs) in solvents is often a prerequisite for their use in advanced materials. Dispersion procedures, reagent concentration as well as the interactions among reagent, defective CNTs and near-perfect CNTs will affect the resulting CNT dispersion properties. This study, for the first time, presents a detailed comparison between two different approaches for dispersing CNTs. The results enhance our understanding of the interactions between surfactant, defective CNTs and near-perfect CNTs and thus provide insight into the mechanism of CNT dispersion. Dispersions of "as-produced" short multi-walled carbon nanotubes (MWCNTs) in N,N-dimethylformamide were prepared by two different surfactant (Triton X-100) assisted methods: ultrasonication and ultrasonication followed by centrifugation, decanting the supernatant and redispersing the precipitate. Visual observation and UV-visible spectroscopy results showed that the latter method produce a more stable dispersion with higher MWCNT content compared to dispersions produced by ultrasonication alone. Transmission electron microscopy and Raman spectroscopic investigations revealed that the centrifugation/ decanting step removed highly defective nanotubes, amorphous carbon and excess surfactant from the readily re-dispersible near-perfect CNT precipitate. This is contrary to other published findings where the dispersed MWCNTs were found in the supernatant. Thermogravimetric analysis showed that 95 % of Triton X-100 was removed by centrifugation/decanting step, and the remainder of the Triton X-100 molecules is likely randomly adsorbed onto the MWCNT surface. Infrared spectral analysis suggests that the methylene groups of the polyoxyethylene (aliphatic ether) chains of the residual Triton X-100 molecules are interacting with the MWCNTs. © 2014 Springer Science+Business Media.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adsorption of small biomolecules onto the surface of nanoparticles offers a novel route to generation of nanoparticle assemblies with predictable architectures. Previously, ligand-exchange experiments on citrate-capped gold nanoparticles with the amino acid arginine were reported to support linear nanoparticle assemblies. Here, we use a combination of atomistic modeling with experimental characterization to explore aspects of the assembly hypothesis for these systems. Using molecular simulation, we probe the structural and energetic characteristics of arginine overlayers on the Au(111) surface under aqueous conditions at both low- and high-coverage regimes. In the low-density regime, the arginines lie flat on the surface. At constant composition, these overlayers are found to be lower in energy than the densely packed films, although the latter case appears kinetically stable when arginine is adsorbed via the zwitterion group, exposing the charged guanidinium group to the solvent. Our findings suggest that zwitterion-zwitterion hydrogen bonding at the gold surface and minimization of the electrostatic repulsion between adjacent guanidinium groups play key roles in determining arginine overlayer stability at the aqueous gold interface. Ligand-exchange experiments of citrate-capped gold nanoparticles with arginine derivatives agmatine and N-methyl-l-arginine reveal that modification at the guanidinium group significantly diminishes the propensity for linear assembly of the nanoparticles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, optical sensing performance of tapered multimode fiber tip coated with graphene oxide (GO) nanostructured thin film towards aqueous ethanol with different concentrations is investigated. The tapering process of the optical fiber is done by a glass processing machine. The multimode optical fiber tip is dip-coated with GO and annealed at 70 °C to enhance the binding of the nanomaterials to the silica fiber. FESEM, Raman microscopy and XRD analyses are performed to micro-characterize the GO thin films. The morphology of the GO is observed to be in sheets forms. The reflectance response of the GO coated fiber tip is compared with the uncoated tip. The measurements are taken using a spectrophotometer in the optical wavelength range of 550-720 nm. The reflectance response of the GO coated fiber tip reduced proportionally, upon exposure to ethanol with concentration range of 5-80%. The dynamic response of the developed sensor showed strong reversibility and repeatability when it is exposed to ethanol with concentrations of 5%, 20% and 40% in distilled water. At room temperature, the sensor shows fast response and recovery as low as 19 and 25 s, respectively. © 2014 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Investigation of the non-covalent interaction of biomolecules with aqueous graphene interfaces is a rapidly expanding area. However, reliable exploitation of these interfaces in many applications requires that the links between the sequence and binding of the adsorbed peptide structures be clearly established. Molecular dynamics (MD) simulations can play a key role in elucidating the conformational ensemble of peptides adsorbed at graphene interfaces, helping to elucidate these rules in partnership with experimental characterisation. We apply our recently-developed polarisable force-field for biomolecule-graphene interfaces, GRAPPA, in partnership with advanced simulation approaches, to probe the adsorption behaviour of peptides at aqueous graphene. First we determine the free energy of adsorption of all twenty naturally occurring amino acids (AAs) via metadynamics simulations, providing a benchmark for interpreting peptide-graphene adsorption studies. From these free energies, we find that strong-binding amino acids have flat and/or compact side chain groups, and we relate this behaviour to the interfacial solvent structuring. Second, we apply replica exchange with solute tempering simulations to efficiently and widely sample the conformational ensemble of two experimentally-characterised peptide sequences, P1 and its alanine mutant P1A3, in solution and adsorbed on graphene. For P1 we find a significant minority of the conformational ensemble possesses a helical structure, both in solution and when adsorbed, while P1A3 features mostly extended, random-coil conformations. In solution this helical P1 configuration is stabilised through favourable intra-peptide interactions, while the adsorbed structure is stabilised via interaction of four strongly-binding residues, identified from our metadynamics simulations, with the aqueous graphene interface. Our findings rationalise the performance of the P1 sequence as a known graphene binder.