962 resultados para APOLIPOPROTEIN-E-GENOTYPE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

RAPADILINO syndrome is an autosomally resessively inherited condition that belongs to a group of rare syndromes more common in Finland than in other parts of the world. RAPADILINO is characterized by pre- and postnatal growth retardation, radial ray defects, diarrhoea of unknown aetiology during chilhood, a facial resemblance with other patients and normal intelligence. In Finland, 15 patients with this condition have been found which compares with only five patients in other parts of the world. We found RECQL4 gene mutations in RAPADILINO patients and proved this syndrome to be allelic with a subgroup of Rothmund-Thomson syndrome (RTS). Later we found RECQL4 mutations in patients with Baller-Gerold syndrome (BGS). These three syndromes share clinical findings and differential diagnostics rely on poikiloderma and craniosynostosis not seen in RAPADILINO syndrome. We found five different mutations in the Finnish RAPADILINO patients. The g.2545delT mutation is the founder mutation in the Finnish population as all the patients are either homozygotes or compound heterozygotes for it. This mutation leads to the inframe skipping of exon seven from mRNA. The protein encoded by this mutant mRNA lacks the nuclear retention signal and thus leads to the mislocalization of the mutant protein. The genotype-phenotype correlation is not straightforward but it seems that RAPADILINO could be due to alteration in protein function and truncating mutations in both alleles are more common among RTS patients. RTS patients with RECQL4 mutations have an elevated risk for osteosarcoma, but their risk to develop other types of malignancies is not increased.Two Finnish RAPADILINO patients have been diagnosed with osteosarcoma, but in addition to this we have found an excess of lymphoma cases among the Finnish RAPADILINO patients. This difference between cancer types could be due to different mutations found in these syndromes. The mutation screening of the patients will help to differentiate patients who have RECQL4 mutations and thus the elevated cancer risk. Patients will benefit from the follow up since early detection of malignancies is important for the treatment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By “phenotypic plasticity” we refer to the capacity of a genotype to exhibit different phenotypes, whether in the same or in different environments. We have previously demonstrated that phenotypic plasticity can improve the degree of adaptation achieved via natural selection (Behera & Nanjundiah, 1995). That result was obtained from a genetic algorithm model of haploid genotypes (idealized as one-dimensional strings of genes) evolving in a fixed environment. Here, the dynamics of evolution is examined under conditions of a cyclically varying environment. We find that the rate of evolution, as well as the extent of adaptation (as measured by mean population fitness) is lowered because of environmental cycling. The decrease is adaptation caused by a varying environment can, however, be partly or wholly compensated by an increase in the degree of plasticity that a genotype is capable of. Also, the reduction of population fitness caused by a variable environment can be partially offset by decreasing the total number of genetic loci. We conjecture that an increase in genome size may have been among the factors responsible for the evolution of phenotypic plasticity.