995 resultados para ADAPTIVE TRAITS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relationship between food security and sustainable land use is considered to be of the uttermost importance to increase yields without having to increase the agricultural land area over which crops are grown. In the present study nitrogen concentration (25 and 85 kg ha-1) and planting density (6.7, 10 and 25 plants m-2) were investigated for their effect on whole plant physiology and pod seed yield in kale (Brassica oleracea), to determine if the fruit (pod) yield could be manipulated agronomically. Nitrogen concentration did not significantly affect seed yield and it is therefore recommended that the lower concentration be used commercially. Conversely planting density did have a significant effect with increases in seed yield observed at the highest planting density of 25 plants m-2, therefore this high planting density would be recommended commercially to maximise area efficiency, highlighting that simple agronomic changes are capable of increasing crop yields over a set area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Key message We have identified QTLs for stomatal characteristics on chromosome II of faba bean by applying SNPs derived from M. truncatula , and have identified candidate genes within these QTLs using synteny between the two species. Abstract Faba bean (Vicia faba L.) is a valuable food and feed crop worldwide, but drought often limits its production, and its genome is large and poorly mapped. No information is available on the effects of genomic regions and genes on drought adaptation characters such as stomatal characteristics in this species, but the synteny between the sequenced model legume, Medicago truncatula, and faba bean can be used to identify candidate genes. A mapping population of 211 F5 recombinant inbred lines (Mélodie/2 × ILB 938/2) were phenotyped to identify quantitative trait loci (QTL) affecting stomatal morphology and function, along with seed weight, under well-watered conditions in a climate-controlled glasshouse in 2013 and 2014. Canopy temperature (CT) was evaluated in 2013 under water-deficit (CTd). In total, 188 polymorphic single nucleotide polymorphisms (SNPs), developed from M. truncatula genome data, were assigned to nine linkage groups that covered ~928 cM of the faba bean genome with an average inter-marker distance of 5.8 cM. 15 putative QTLs were detected, of which eight (affecting stomatal density, length and conductance and CT) co-located on chromosome II, in the vicinity of a possible candidate gene—a receptor-like protein kinase found in the syntenic interval of M. truncatula chromosome IV. A ribose-phosphate pyrophosphokinase from M. truncatula chromosome V, postulated as a possible candidate gene for the QTL for CTd, was found some distance away in the same chromosome. These results demonstrate that genomic information from M. truncatula can successfully be translated to the faba bean genome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a fast and reliable method for redistributing a computational mesh in three dimensions which can generate a complex three dimensional mesh without any problems due to mesh tangling. The method relies on a three dimensional implementation of the parabolic Monge–Ampère (PMA) technique, for finding an optimally transported mesh. The method for implementing PMA is described in detail and applied to both static and dynamic mesh redistribution problems, studying both the convergence and the computational cost of the algorithm. The algorithm is applied to a series of problems of increasing complexity. In particular very regular meshes are generated to resolve real meteorological features (derived from a weather forecasting model covering the UK area) in grids with over 2×107 degrees of freedom. The PMA method computes these grids in times commensurate with those required for operational weather forecasting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop an on-line Gaussian mixture density estimator (OGMDE) in the complex-valued domain to facilitate adaptive minimum bit-error-rate (MBER) beamforming receiver for multiple antenna based space-division multiple access systems. Specifically, the novel OGMDE is proposed to adaptively model the probability density function of the beamformer’s output by tracking the incoming data sample by sample. With the aid of the proposed OGMDE, our adaptive beamformer is capable of updating the beamformer’s weights sample by sample to directly minimize the achievable bit error rate (BER). We show that this OGMDE based MBER beamformer outperforms the existing on-line MBER beamformer, known as the least BER beamformer, in terms of both the convergence speed and the achievable BER.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High bandwidth-efficiency quadrature amplitude modulation (QAM) signaling widely adopted in high-rate communication systems suffers from a drawback of high peak-toaverage power ratio, which may cause the nonlinear saturation of the high power amplifier (HPA) at transmitter. Thus, practical high-throughput QAM communication systems exhibit nonlinear and dispersive channel characteristics that must be modeled as a Hammerstein channel. Standard linear equalization becomes inadequate for such Hammerstein communication systems. In this paper, we advocate an adaptive B-Spline neural network based nonlinear equalizer. Specifically, during the training phase, an efficient alternating least squares (LS) scheme is employed to estimate the parameters of the Hammerstein channel, including both the channel impulse response (CIR) coefficients and the parameters of the B-spline neural network that models the HPA’s nonlinearity. In addition, another B-spline neural network is used to model the inversion of the nonlinear HPA, and the parameters of this inverting B-spline model can easily be estimated using the standard LS algorithm based on the pseudo training data obtained as a natural byproduct of the Hammerstein channel identification. Nonlinear equalisation of the Hammerstein channel is then accomplished by the linear equalization based on the estimated CIR as well as the inverse B-spline neural network model. Furthermore, during the data communication phase, the decision-directed LS channel estimation is adopted to track the time-varying CIR. Extensive simulation results demonstrate the effectiveness of our proposed B-Spline neural network based nonlinear equalization scheme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Atypical self-processing is an emerging theme in autism research, suggested by lower self-reference effect in memory, and atypical neural responses to visual self-representations. Most research on physical self-processing in autism uses visual stimuli. However, the self is a multimodal construct, and therefore, it is essential to test self-recognition in other sensory modalities as well. Self-recognition in the auditory modality remains relatively unexplored and has not been tested in relation to autism and related traits. This study investigates self-recognition in auditory and visual domain in the general population and tests if it is associated with autistic traits. Methods Thirty-nine neurotypical adults participated in a two-part study. In the first session, individual participant’s voice was recorded and face was photographed and morphed respectively with voices and faces from unfamiliar identities. In the second session, participants performed a ‘self-identification’ task, classifying each morph as ‘self’ voice (or face) or an ‘other’ voice (or face). All participants also completed the Autism Spectrum Quotient (AQ). For each sensory modality, slope of the self-recognition curve was used as individual self-recognition metric. These two self-recognition metrics were tested for association between each other, and with autistic traits. Results Fifty percent ‘self’ response was reached for a higher percentage of self in the auditory domain compared to the visual domain (t = 3.142; P < 0.01). No significant correlation was noted between self-recognition bias across sensory modalities (τ = −0.165, P = 0.204). Higher recognition bias for self-voice was observed in individuals higher in autistic traits (τ AQ = 0.301, P = 0.008). No such correlation was observed between recognition bias for self-face and autistic traits (τ AQ = −0.020, P = 0.438). Conclusions Our data shows that recognition bias for physical self-representation is not related across sensory modalities. Further, individuals with higher autistic traits were better able to discriminate self from other voices, but this relation was not observed with self-face. A narrow self-other overlap in the auditory domain seen in individuals with high autistic traits could arise due to enhanced perceptual processing of auditory stimuli often observed in individuals with autism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the development of new therapies, it is not uncommon to test whether a new treatment works better than the existing treatment for all patients who suffer from a condition (full population) or for a subset of the full population (subpopulation). One approach that may be used for this objective is to have two separate trials, where in the first trial, data are collected to determine if the new treatment benefits the full population or the subpopulation. The second trial is a confirmatory trial to test the new treatment in the population selected in the first trial. In this paper, we consider the more efficient two-stage adaptive seamless designs (ASDs), where in stage 1, data are collected to select the population to test in stage 2. In stage 2, additional data are collected to perform confirmatory analysis for the selected population. Unlike the approach that uses two separate trials, for ASDs, stage 1 data are also used in the confirmatory analysis. Although ASDs are efficient, using stage 1 data both for selection and confirmatory analysis introduces selection bias and consequently statistical challenges in making inference. We will focus on point estimation for such trials. In this paper, we describe the extent of bias for estimators that ignore multiple hypotheses and selecting the population that is most likely to give positive trial results based on observed stage 1 data. We then derive conditionally unbiased estimators and examine their mean squared errors for different scenarios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the effect on balance of a number of Schur product-type localization schemes which have been designed with the primary function of reducing spurious far-field correlations in forecast error statistics. The localization schemes studied comprise a non-adaptive scheme (where the moderation matrix is decomposed in a spectral basis), and two adaptive schemes, namely a simplified version of SENCORP (Smoothed ENsemble COrrelations Raised to a Power) and ECO-RAP (Ensemble COrrelations Raised to A Power). The paper shows, we believe for the first time, how the degree of balance (geostrophic and hydrostatic) implied by the error covariance matrices localized by these schemes can be diagnosed. Here it is considered that an effective localization scheme is one that reduces spurious correlations adequately but also minimizes disruption of balance (where the 'correct' degree of balance or imbalance is assumed to be possessed by the unlocalized ensemble). By varying free parameters that describe each scheme (e.g. the degree of truncation in the schemes that use the spectral basis, the 'order' of each scheme, and the degree of ensemble smoothing), it is found that a particular configuration of the ECO-RAP scheme is best suited to the convective-scale system studied. According to our diagnostics this ECO-RAP configuration still weakens geostrophic and hydrostatic balance, but overall this is less so than for other schemes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An aim of government and the international community is to respond to global processes and crises through a range of policy and practical approaches that help limit damage from shocks and stresses. Three approaches to vulnerability reduction that have become particularly prominent in recent years are social protection (SP), disaster risk reduction (DRR) and climate change adaptation (CCA). Although these approaches have much in common, they have developed separately over the last two decades. However, given the increasingly complex and interlinked array of risks that poor and vulnerable people face, it is likely that they will not be sufficient in the long run if they continue to be applied in isolation from one another. In recognition of this challenge, the concept of Adaptive Social Protection (ASP) has been developed. ASP refers to a series of measures which aims to build resilience of the poorest and most vulnerable people to climate change by combining elements of SP, DRR and CCA in programmes and projects. The aim of this paper is to provide an initial assessment of the ways in which these elements are being brought together in development policy and practice. It does this by conducting a meta-analysis of 124 agricultural programmes implemented in five countries in south Asia. These are Afghanistan, Bangladesh, India, Nepal and Pakistan. The findings show that full integration of SP, DRR and CCA is relatively limited in south Asia, although there has been significant progress in combining SP and DRR in the last ten years. Projects that combine elements of SP, DRR and CCA tend to emphasise broad poverty and vulnerability reduction goals relative to those that do not. Such approaches can provide valuable lessons and insights for the promotion of climate resilient livelihoods amongst policymakers and practitioners.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Explaining the diversity of languages across the world is one of the central aims of typological, historical, and evolutionary linguistics. We consider the effect of language contact-the number of non-native speakers a language has-on the way languages change and evolve. By analysing hundreds of languages within and across language families, regions, and text types, we show that languages with greater levels of contact typically employ fewer word forms to encode the same information content (a property we refer to as lexical diversity). Based on three types of statistical analyses, we demonstrate that this variance can in part be explained by the impact of non-native speakers on information encoding strategies. Finally, we argue that languages are information encoding systems shaped by the varying needs of their speakers. Language evolution and change should be modeled as the co-evolution of multiple intertwined adaptive systems: On one hand, the structure of human societies and human learning capabilities, and on the other, the structure of language.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Soil carbon (C) storage is a key ecosystem service. Soil C stocks play a vital role in soil fertility and climate regulation, but the factors that control these stocks at regional and national scales are unknown, particularly when their composition and stability are considered. As a result, their mapping relies on either unreliable proxy measures or laborious direct measurements. 2. Using data from an extensive national survey of English grasslands we show that surface soil (0-7cm) C stocks in size fractions of varying stability can be predicted at both regional and national scales from plant traits and simple measures of soil and climatic conditions. 3. Soil C stocks in the largest pool, of intermediate particle size (50-250 µm), were best explained by mean annual temperature (MAT), soil pH and soil moisture content. The second largest C pool, highly stable physically and biochemically protected particles (0.45-50 µm), was explained by soil pH and the community abundance weighted mean (CWM) leaf nitrogen (N) content, with the highest soil C stocks under N rich vegetation. The C stock in the small active fraction (250-4000 µm) was explained by a wide range of variables: MAT, mean annual precipitation, mean growing season length, soil pH and CWM specific leaf area; stocks were higher under vegetation with thick and/or dense leaves. 4. Testing the models describing these fractions against data from an independent English region indicated moderately strong correlation between predicted and actual values and no systematic bias, with the exception of the active fraction, for which predictions were inaccurate. 5. Synthesis and Applications: Validation indicates that readily available climate, soils and plant survey data can be effective in making local- to landscape-scale (1-100,000 km2) soil C stock predictions. Such predictions are a crucial component of effective management strategies to protect C stocks and enhance soil C sequestration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A deficit in empathy has been suggested to underlie social behavioural atypicalities in autism. A parallel theoretical account proposes that reduced social motivation (i.e., low responsivity to social rewards) can account for the said atypicalities. Recent evidence suggests that autistic traits modulate the link between reward and proxy metrics related to empathy. Using an evaluative conditioning paradigm to associate high and low rewards with faces, a previous study has shown that individuals high in autistic traits show reduced spontaneous facial mimicry of faces associated with high vs. low reward. This observation raises the possibility that autistic traits modulate the magnitude of evaluative conditioning. To test this, we investigated (a) if autistic traits could modulate the ability to implicitly associate a reward value to a social stimulus (reward learning/conditioning, using the Implicit Association Task, IAT); (b) if the learned association could modulate participants’ prosocial behaviour (i.e., social reciprocity, measured using the cyberball task); (c) if the strength of this modulation was influenced by autistic traits. In 43 neurotypical participants, we found that autistic traits moderated the relationship of social reward learning on prosocial behaviour but not reward learning itself. This evidence suggests that while autistic traits do not directly influence social reward learning, they modulate the relationship of social rewards with prosocial behaviour

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Children with callous-unemotional (CU) traits, a proposed precursor to adult psychopathy, are characterized by impaired emotion recognition, reduced responsiveness to others’ distress, and a lack of guilt or empathy. Reduced attention to faces, and more specifically to the eye region, has been proposed to underlie these difficulties, although this has never been tested longitudinally from infancy. Attention to faces occurs within the context of dyadic caregiver interactions, and early environment including parenting characteristics has been associated with CU traits. The present study tested whether infants’ preferential tracking of a face with direct gaze and levels of maternal sensitivity predict later CU traits. Methods Data were analyzed from a stratified random sample of 213 participants drawn from a population-based sample of 1233 first-time mothers. Infants’ preferential face tracking at 5 weeks and maternal sensitivity at 29 weeks were entered into a weighted linear regression as predictors of CU traits at 2.5 years. Results Controlling for a range of confounders (e.g., deprivation), lower preferential face tracking predicted higher CU traits (p = .001). Higher maternal sensitivity predicted lower CU traits in girls (p = .009), but not boys. No significant interaction between face tracking and maternal sensitivity was found. Conclusions This is the first study to show that attention to social features during infancy as well as early sensitive parenting predict the subsequent development of CU traits. Identifying such early atypicalities offers the potential for developing parent-mediated interventions in children at risk for developing CU traits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adaptive governance is the use of novel approaches within policy to support experimentation and learning. Social learning reflects the engagement of interdependent stakeholders within this learning. Much attention has focused on these concepts as a solution for resilience in governing institutions in an uncertain climate; resilience representing the ability of a system to absorb shock and to retain its function and form through reorganisation. However, there are still many questions to how these concepts enable resilience, particularly in vulnerable, developing contexts. A case study from Uganda presents how these concepts promote resilient livelihood outcomes among rural subsistence farmers within a decentralised governing framework. This approach has the potential to highlight the dynamics and characteristics of a governance system which may manage change. The paper draws from the enabling characteristics of adaptive governance, including lower scale dynamics of bonding and bridging ties and strong leadership. Central to these processes were learning platforms promoting knowledge transfer leading to improved self-efficacy, innovation and livelihood skills. However even though aspects of adaptive governance were identified as contributing to resilience in livelihoods, some barriers were identified. Reflexivity and multi-stakeholder collaboration were evident in governing institutions; however, limited self-organisation and vertical communication demonstrated few opportunities for shifts in governance, which was severely challenged by inequity, politicisation and elite capture. The paper concludes by outlining implications for climate adaptation policy through promoting the importance of mainstreaming adaptation alongside existing policy trajectories; highlighting the significance of collaborative spaces for stakeholders and the tackling of inequality and corruption.