980 resultados para 826
Resumo:
Membrane proteins, which reside in the membranes of cells, play a critical role in many important biological processes including cellular signaling, immune response, and material and energy transduction. Because of their key role in maintaining the environment within cells and facilitating intercellular interactions, understanding the function of these proteins is of tremendous medical and biochemical significance. Indeed, the malfunction of membrane proteins has been linked to numerous diseases including diabetes, cirrhosis of the liver, cystic fibrosis, cancer, Alzheimer's disease, hypertension, epilepsy, cataracts, tubulopathy, leukodystrophy, Leigh syndrome, anemia, sensorineural deafness, and hypertrophic cardiomyopathy.1-3 However, the structure of many of these proteins and the changes in their structure that lead to disease-related malfunctions are not well understood. Additionally, at least 60% of the pharmaceuticals currently available are thought to target membrane proteins, despite the fact that their exact mode of operation is not known.4-6 Developing a detailed understanding of the function of a protein is achieved by coupling biochemical experiments with knowledge of the structure of the protein. Currently the most common method for obtaining three-dimensional structure information is X-ray crystallography. However, no a priori methods are currently available to predict crystallization conditions for a given protein.7-14 This limitation is currently overcome by screening a large number of possible combinations of precipitants, buffer, salt, and pH conditions to identify conditions that are conducive to crystal nucleation and growth.7,9,11,15-24 Unfortunately, these screening efforts are often limited by difficulties associated with quantity and purity of available protein samples. While the two most significant bottlenecks for protein structure determination in general are the (i) obtaining sufficient quantities of high quality protein samples and (ii) growing high quality protein crystals that are suitable for X-ray structure determination,7,20,21,23,25-47 membrane proteins present additional challenges. For crystallization it is necessary to extract the membrane proteins from the cellular membrane. However, this process often leads to denaturation. In fact, membrane proteins have proven to be so difficult to crystallize that of the more than 66,000 structures deposited in the Protein Data Bank,48 less than 1% are for membrane proteins, with even fewer present at high resolution (< 2Å)4,6,49 and only a handful are human membrane proteins.49 A variety of strategies including detergent solubilization50-53 and the use of artificial membrane-like environments have been developed to circumvent this challenge.43,53-55 In recent years, the use of a lipidic mesophase as a medium for crystallizing membrane proteins has been demonstrated to increase success for a wide range of membrane proteins, including human receptor proteins.54,56-62 This in meso method for membrane protein crystallization, however, is still by no means routine due to challenges related to sample preparation at sub-microliter volumes and to crystal harvesting and X-ray data collection. This dissertation presents various aspects of the development of a microfluidic platform to enable high throughput in meso membrane protein crystallization at a level beyond the capabilities of current technologies. Microfluidic platforms for protein crystallization and other lab-on-a-chip applications have been well demonstrated.9,63-66 These integrated chips provide fine control over transport phenomena and the ability to perform high throughput analyses via highly integrated fluid networks. However, the development of microfluidic platforms for in meso protein crystallization required the development of strategies to cope with extremely viscous and non-Newtonian fluids. A theoretical treatment of highly viscous fluids in microfluidic devices is presented in Chapter 3, followed by the application of these strategies for the development of a microfluidic mixer capable of preparing a mesophase sample for in meso crystallization at a scale of less than 20 nL in Chapter 4. This approach was validated with the successful on chip in meso crystallization of the membrane protein bacteriorhodopsin. In summary, this is the first report of a microfluidic platform capable of performing in meso crystallization on-chip, representing a 1000x reduction in the scale at which mesophase trials can be prepared. Once protein crystals have formed, they are typically harvested from the droplet they were grown in and mounted for crystallographic analysis. Despite the high throughput automation present in nearly all other aspects of protein structure determination, the harvesting and mounting of crystals is still largely a manual process. Furthermore, during mounting the fragile protein crystals can potentially be damaged, both from physical and environmental shock. To circumvent these challenges an X-ray transparent microfluidic device architecture was developed to couple the benefits of scale, integration, and precise fluid control with the ability to perform in situ X-ray analysis (Chapter 5). This approach was validated successfully by crystallization and subsequent on-chip analysis of the soluble proteins lysozyme, thaumatin, and ribonuclease A and will be extended to microfluidic platforms for in meso membrane protein crystallization. The ability to perform in situ X-ray analysis was shown to provide extremely high quality diffraction data, in part as a result of not being affected by damage due to physical handling of the crystals. As part of the work described in this thesis, a variety of data collection strategies for in situ data analysis were also tested, including merging of small slices of data from a large number of crystals grown on a single chip, to allow for diffraction analysis at biologically relevant temperatures. While such strategies have been applied previously,57,59,61,67 they are potentially challenging when applied via traditional methods due to the need to grow and then mount a large number of crystals with minimal crystal-to-crystal variability. The integrated nature of microfluidic platforms easily enables the generation of a large number of reproducible crystallization trials. This, coupled with in situ analysis capabilities has the potential of being able to acquire high resolution structural data of proteins at biologically relevant conditions for which only small crystals, or crystals which are adversely affected by standard cryocooling techniques, could be obtained (Chapters 5 and 6). While the main focus of protein crystallography is to obtain three-dimensional protein structures, the results of typical experiments provide only a static picture of the protein. The use of polychromatic or Laue X-ray diffraction methods enables the collection of time resolved structural information. These experiments are very sensitive to crystal quality, however, and often suffer from severe radiation damage due to the intense polychromatic X-ray beams. Here, as before, the ability to perform in situ X-ray analysis on many small protein crystals within a microfluidic crystallization platform has the potential to overcome these challenges. An automated method for collecting a "single-shot" of data from a large number of crystals was developed in collaboration with the BioCARS team at the Advanced Photon Source at Argonne National Laboratory (Chapter 6). The work described in this thesis shows that, even more so than for traditional structure determination efforts, the ability to grow and analyze a large number of high quality crystals is critical to enable time resolved structural studies of novel proteins. In addition to enabling X-ray crystallography experiments, the development of X-ray transparent microfluidic platforms also has tremendous potential to answer other scientific questions, such as unraveling the mechanism of in meso crystallization. For instance, the lipidic mesophases utilized during in meso membrane protein crystallization can be characterized by small angle X-ray diffraction analysis. Coupling in situ analysis with microfluidic platforms capable of preparing these difficult mesophase samples at very small volumes has tremendous potential to enable the high throughput analysis of these systems on a scale that is not reasonably achievable using conventional sample preparation strategies (Chapter 7). In collaboration with the LS-CAT team at the Advanced Photon Source, an experimental station for small angle X-ray analysis coupled with the high quality visualization capabilities needed to target specific microfluidic samples on a highly integrated chip is under development. Characterizing the phase behavior of these mesophase systems and the effects of various additives present in crystallization trials is key for developing an understanding of how in meso crystallization occurs. A long term goal of these studies is to enable the rational design of in meso crystallization experiments so as to avoid or limit the need for high throughput screening efforts. In summary, this thesis describes the development of microfluidic platforms for protein crystallization with in situ analysis capabilities. Coupling the ability to perform in situ analysis with the small scale, fine control, and the high throughput nature of microfluidic platforms has tremendous potential to enable a new generation of crystallographic studies and facilitate the structure determination of important biological targets. The development of platforms for in meso membrane protein crystallization is particularly significant because they enable the preparation of highly viscous mixtures at a previously unachievable scale. Work in these areas is ongoing and has tremendous potential to improve not only current the methods of protein crystallization and crystallography, but also to enhance our knowledge of the structure and function of proteins which could have a significant scientific and medical impact on society as a whole. The microfluidic technology described in this thesis has the potential to significantly advance our understanding of the structure and function of membrane proteins, thereby aiding the elucidation of human biology, the development of pharmaceuticals with fewer side effects for a wide range of diseases. References (1) Quick, M.; Javitch, J. A. P Natl Acad Sci USA 2007, 104, 3603. (2) Trubetskoy, V. S.; Burke, T. J. Am Lab 2005, 37, 19. (3) Pecina, P.; Houstkova, H.; Hansikova, H.; Zeman, J.; Houstek, J. Physiol Res 2004, 53, S213. (4) Arinaminpathy, Y.; Khurana, E.; Engelman, D. M.; Gerstein, M. B. Drug Discovery Today 2009, 14, 1130. (5) Overington, J. P.; Al-Lazikani, B.; Hopkins, A. L. Nat Rev Drug Discov 2006, 5, 993. (6) Dauter, Z.; Lamzin, V. S.; Wilson, K. S. Current Opinion in Structural Biology 1997, 7, 681. (7) Hansen, C.; Quake, S. R. Current Opinion in Structural Biology 2003, 13, 538. (8) Govada, L.; Carpenter, L.; da Fonseca, P. C. A.; Helliwell, J. R.; Rizkallah, P.; Flashman, E.; Chayen, N. E.; Redwood, C.; Squire, J. M. J Mol Biol 2008, 378, 387. (9) Hansen, C. L.; Skordalakes, E.; Berger, J. M.; Quake, S. R. P Natl Acad Sci USA 2002, 99, 16531. (10) Leng, J.; Salmon, J.-B. Lab Chip 2009, 9, 24. (11) Zheng, B.; Gerdts, C. J.; Ismagilov, R. F. Current Opinion in Structural Biology 2005, 15, 548. (12) Lorber, B.; Delucas, L. J.; Bishop, J. B. J Cryst Growth 1991, 110, 103. (13) Talreja, S.; Perry, S. L.; Guha, S.; Bhamidi, V.; Zukoski, C. F.; Kenis, P. J. A. The Journal of Physical Chemistry B 2010, 114, 4432. (14) Chayen, N. E. Current Opinion in Structural Biology 2004, 14, 577. (15) He, G. W.; Bhamidi, V.; Tan, R. B. H.; Kenis, P. J. A.; Zukoski, C. F. Cryst Growth Des 2006, 6, 1175. (16) Zheng, B.; Tice, J. D.; Roach, L. S.; Ismagilov, R. F. Angew Chem Int Edit 2004, 43, 2508. (17) Li, L.; Mustafi, D.; Fu, Q.; Tereshko, V.; Chen, D. L. L.; Tice, J. D.; Ismagilov, R. F. P Natl Acad Sci USA 2006, 103, 19243. (18) Song, H.; Chen, D. L.; Ismagilov, R. F. Angew Chem Int Edit 2006, 45, 7336. (19) van der Woerd, M.; Ferree, D.; Pusey, M. Journal of Structural Biology 2003, 142, 180. (20) Ng, J. D.; Gavira, J. A.; Garcia-Ruiz, J. M. Journal of Structural Biology 2003, 142, 218. (21) Talreja, S.; Kenis, P. J. A.; Zukoski, C. F. Langmuir 2007, 23, 4516. (22) Hansen, C. L.; Quake, S. R.; Berger, J. M. US, 2007. (23) Newman, J.; Fazio, V. J.; Lawson, B.; Peat, T. S. Cryst Growth Des 2010, 10, 2785. (24) Newman, J.; Xu, J.; Willis, M. C. Acta Crystallographica Section D 2007, 63, 826. (25) Collingsworth, P. D.; Bray, T. L.; Christopher, G. K. J Cryst Growth 2000, 219, 283. (26) Durbin, S. D.; Feher, G. Annu Rev Phys Chem 1996, 47, 171. (27) Talreja, S.; Kim, D. Y.; Mirarefi, A. Y.; Zukoski, C. F.; Kenis, P. J. A. J Appl Crystallogr 2005, 38, 988. (28) Yoshizaki, I.; Nakamura, H.; Sato, T.; Igarashi, N.; Komatsu, H.; Yoda, S. J Cryst Growth 2002, 237, 295. (29) Anderson, M. J.; Hansen, C. L.; Quake, S. R. P Natl Acad Sci USA 2006, 103, 16746. (30) Hansen, C. L.; Sommer, M. O. A.; Quake, S. R. P Natl Acad Sci USA 2004, 101, 14431. (31) Lounaci, M.; Rigolet, P.; Abraham, C.; Le Berre, M.; Chen, Y. Microelectron Eng 2007, 84, 1758. (32) Zheng, B.; Roach, L. S.; Ismagilov, R. F. J Am Chem Soc 2003, 125, 11170. (33) Zhou, X.; Lau, L.; Lam, W. W. L.; Au, S. W. N.; Zheng, B. Anal. Chem. 2007. (34) Cherezov, V.; Caffrey, M. J Appl Crystallogr 2003, 36, 1372. (35) Qutub, Y.; Reviakine, I.; Maxwell, C.; Navarro, J.; Landau, E. M.; Vekilov, P. G. J Mol Biol 2004, 343, 1243. (36) Rummel, G.; Hardmeyer, A.; Widmer, C.; Chiu, M. L.; Nollert, P.; Locher, K. P.; Pedruzzi, I.; Landau, E. M.; Rosenbusch, J. P. Journal of Structural Biology 1998, 121, 82. (37) Gavira, J. A.; Toh, D.; Lopez-Jaramillo, J.; Garcia-Ruiz, J. M.; Ng, J. D. Acta Crystallogr D 2002, 58, 1147. (38) Stevens, R. C. Current Opinion in Structural Biology 2000, 10, 558. (39) Baker, M. Nat Methods 2010, 7, 429. (40) McPherson, A. In Current Topics in Membranes, Volume 63; Volume 63 ed.; DeLucas, L., Ed.; Academic Press: 2009, p 5. (41) Gabrielsen, M.; Gardiner, A. T.; Fromme, P.; Cogdell, R. J. In Current Topics in Membranes, Volume 63; Volume 63 ed.; DeLucas, L., Ed.; Academic Press: 2009, p 127. (42) Page, R. In Methods in Molecular Biology: Structural Proteomics - High Throughput Methods; Kobe, B., Guss, M., Huber, T., Eds.; Humana Press: Totowa, NJ, 2008; Vol. 426, p 345. (43) Caffrey, M. Ann Rev Biophys 2009, 38, 29. (44) Doerr, A. Nat Methods 2006, 3, 244. (45) Brostromer, E.; Nan, J.; Li, L.-F.; Su, X.-D. Biochemical and Biophysical Research Communications 2009, 386, 634. (46) Li, G.; Chen, Q.; Li, J.; Hu, X.; Zhao, J. Anal Chem 2010, 82, 4362. (47) Jia, Y.; Liu, X.-Y. The Journal of Physical Chemistry B 2006, 110, 6949. (48) RCSB Protein Data Bank. http://www.rcsb.org/ (July 11, 2010). (49) Membrane Proteins of Known 3D Structure. http://blanco.biomol.uci.edu/Membrane_Proteins_xtal.html (July 11, 2010). (50) Michel, H. Trends Biochem Sci 1983, 8, 56. (51) Rosenbusch, J. P. Journal of Structural Biology 1990, 104, 134. (52) Garavito, R. M.; Picot, D. Methods 1990, 1, 57. (53) Kulkarni, C. V. 2010; Vol. 12, p 237. (54) Landau, E. M.; Rosenbusch, J. P. P Natl Acad Sci USA 1996, 93, 14532. (55) Pebay-Peyroula, E.; Rummel, G.; Rosenbusch, J. P.; Landau, E. M. Science 1997, 277, 1676. (56) Cherezov, V.; Liu, W.; Derrick, J. P.; Luan, B.; Aksimentiev, A.; Katritch, V.; Caffrey, M. Proteins: Structure, Function, and Bioinformatics 2008, 71, 24. (57) Cherezov, V.; Rosenbaum, D. M.; Hanson, M. A.; Rasmussen, S. G. F.; Thian, F. S.; Kobilka, T. S.; Choi, H. J.; Kuhn, P.; Weis, W. I.; Kobilka, B. K.; Stevens, R. C. Science 2007, 318, 1258. (58) Cherezov, V.; Yamashita, E.; Liu, W.; Zhalnina, M.; Cramer, W. A.; Caffrey, M. J Mol Biol 2006, 364, 716. (59) Jaakola, V. P.; Griffith, M. T.; Hanson, M. A.; Cherezov, V.; Chien, E. Y. T.; Lane, J. R.; IJzerman, A. P.; Stevens, R. C. Science 2008, 322, 1211. (60) Rosenbaum, D. M.; Cherezov, V.; Hanson, M. A.; Rasmussen, S. G. F.; Thian, F. S.; Kobilka, T. S.; Choi, H. J.; Yao, X. J.; Weis, W. I.; Stevens, R. C.; Kobilka, B. K. Science 2007, 318, 1266. (61) Wacker, D.; Fenalti, G.; Brown, M. A.; Katritch, V.; Abagyan, R.; Cherezov, V.; Stevens, R. C. J Am Chem Soc 2010, 132, 11443. (62) Höfer, N.; Aragão, D.; Caffrey, M. Biophys J 2010, 99, L23. (63) Li, L.; Ismagilov, R. F. Ann Rev Biophys 2010. (64) Pal, R.; Yang, M.; Lin, R.; Johnson, B. N.; Srivastava, N.; Razzacki, S. Z.; Chomistek, K. J.; Heldsinger, D. C.; Haque, R. M.; Ugaz, V. M.; Thwar, P. K.; Chen, Z.; Alfano, K.; Yim, M. B.; Krishnan, M.; Fuller, A. O.; Larson, R. G.; Burke, D. T.; Burns, M. A. Lab Chip 2005, 5, 1024. (65) Jayashree, R. S.; Gancs, L.; Choban, E. R.; Primak, A.; Natarajan, D.; Markoski, L. J.; Kenis, P. J. A. J Am Chem Soc 2005, 127, 16758. (66) Wootton, R. C. R.; deMello, A. J. Chem Commun 2004, 266. (67) McPherson, A. J Appl Crystallogr 2000, 33, 397.
Resumo:
Who owns Zora Neale Hurston? That was the question asked in 1990 by Michele Wallace, in an analysis of the ways in which Hurston has been appropriated by later scholars. Wallace's pungent comparison of later critics to so many 'groupies descending on Elvis Presley's estate' in their haste to turn Hurston to their own purposes strikes a cautionary note for any subsequent writer. As she notes, the risk of canonization is that the work will be misused to derail the future of blackwomen in literature and literary criticism. For Wallace, Harold's introduction to his Modern Critical Views anthology of 1986 is a case in point. This article is copyright 2003 MHRA, and is included in this repository with permission.
Resumo:
Photograph and translation
Resumo:
The aim of this study was to gain a deeper understanding of the learning experiences of upper secondary school students in a virtual learning environment. The focus of the study is younger students aged 16–18. Virtual learning environments are defined as collaborative, interactive and communicative digital environments. The main research question was to distinguish the meaning of learning given by the participants. Did the participants perceive learning potential in the virtual learning environment, and if so, what signifies learning potential? Sub-questions were: What enhances learning? What might inhibit learning in a distance course? How do the participants relate to their role as distant learners? Four upper secondary schools in Finland took part in the study. Thirteen upper secondary students were interviewed after a distance course in social studies. During the analysis, four main categories were identified: responsibility, freedom, time and communication. A constructivist approach to learning was adopted while analysing the interviews, and the categories were understood through cognitive, affective and social dimensions of learning. The implications of the study are that a student-centred pedagogy and a social constructivist course design have the potential to motivate students to interact to learn, while the software, such as Second Life, Google+ and Wikibooks, offers them the possibility to do so. The study introduces an empirically supported concept, virtual learning. Virtual learning assumes an active learner who manages different learning spaces while communicating with people and metacognitively assessing the learning process. At the same time, students get used to the virtual and everchanging nature of information and knowledge.
Resumo:
A Hemoglobinúria paroxística noturna (HPN) é uma doença clonal da célula mãe hematopoiética pluripotente, que origina um clone de células que adquirem uma mutação somática no gene PIG-A, condicionando assim a expressão de proteínas ancoradas à membrana através do GPI (Glicosil- Fosfatidil-Inositol). A presença de clones de HPN em síndromes mielodisplásicas (SMD) demonstrou ter implicações no prognóstico e terapêutica. Com o presente trabalho pretendeu-se contribuir para o melhor conhecimento da frequência de casos HPN em amostras de medula óssea com suspeita de SMD e que a frequência encontrada nas células de linha a neutrófilo, monocítica e eritróide no último estádio da maturação na medula óssea (MO) é similar à observada nas células da mesma linha no sangue periférico (SP). O estudo fenotípico foi realizado em 826 amostras de MO com suspeita de SMD e com rasgos fenotípicos sugestivos desta entidade por citometria de fluxo, de acordo com o painel EUROFLOW para diagnóstico de SMD, para estudo da maturação da linha a Neutrófilo, linha a Monócito, e Eritróide. Nas 826 amostras de MO detetaram-se 7 casos com presença de clones HPN, o que corresponde a uma frequência de 0.8%. A percentagem de células HPN, determinada simultaneamente no SP e na MO, foi idêntica nas 3 linhas hematopoiéticas estudadas. Verificou-se, ainda, que a expressão de IREM-2 no clone maduro normal e no clone HPN nos monócitos, em SP e MO, encontrava-se estatisticamente diminuída no clone HPN. Os resultados do presente estudo indicam uma menor incidência de clones HPN em SMD comparativamente com outros estudos prévios e que é válida a sua determinação em amostras de aspirados de medula óssea. Verificaram-se diferenças claras na expressão de IREM-2 entre clone HPN e células normais da linha monocítica, o que sugere que este possa ser uma proteína ancorada por GPI.
Resumo:
This paper aims to provide aperture corrections for emission lines in a sample of spiral galaxies from the Calar Alto Legacy Integral Field Area Survey (CALIFA) database. In particular, we explore the behavior of the log([O III] λ5007/Hβ)/([N II] λ6583/Hα) (O3N2) and log[N II] lambda 6583/Hα (N2) flux ratios since they are closely connected to different empirical calibrations of the oxygen abundances in star-forming galaxies. We compute the median growth curves of Hα, Hα/Hβ, O3N2, and N-2 up to 2.5R(50) and 1.5 disk R-eff. These distances cover most of the optical spatial extent of the CALIFA galaxies. The growth curves simulate the effect of observing galaxies through apertures of varying radii. We split these growth curves by morphological types and stellar masses to check if there is any dependence on these properties. The median growth curve of the Hα flux shows a monotonous increase with radius with no strong dependence on galaxy inclination, morphological type, and stellar mass. The median growth curve of the Hα/HβH ratio monotonically decreases from the center toward larger radii, showing for small apertures a maximum value of ≈10% larger than the integrated one. It does not show any dependence on inclination, morphological type, and stellar mass. The median growth curve of N-2 shows a similar behavior, decreasing from the center toward larger radii. No strong dependence is seen on the inclination, morphological type, and stellar mass. Finally, the median growth curve of O3N2 increases monotonically with radius, and it does not show dependence on the inclination. However, at small radii it shows systematically higher values for galaxies of earlier morphological types and for high stellar mass galaxies. Applying our aperture corrections to a sample of galaxies from the SDSS survey at 0.02 ≤ z ≤ 0.3 shows that the average difference between fiber-based and aperture-corrected oxygen abundances, for different galaxy stellar mass and redshift ranges, reaches typically to ≈11%, depending on the abundance calibration used. This average difference is found to be systematically biased, though still within the typical uncertainties of oxygen abundances derived from empirical calibrations. Caution must be exercised when using observations of galaxies for small radii (e.g., below 0.5 R_eff) given the high dispersion shown around the median growth curves. Thus, the application of these median aperture corrections to derive abundances for individual galaxies is not recommended when their fluxes come from radii much smaller than either R_50 or R_eff.
Resumo:
Comunidad es un conjunto de personas que conviven en determinado lugar geográfico y con una serie de características comunes entre sí.En ella juega un papel muy decisivo la Biblioteca Escolar ya que esta depende las posibles y futuras influencias que se den relacionados con los aspectos económicos, sociales, políticos, culturales y psicológicos proyectados al bienestar comunal.En el caso del país de Nicaragua todos y cada uno de los que habrán de ejercer funciones bibliotecarias, son conscientes del rol que desempeñaran. Si en un tiempo, su verdadera misión, no fue posible realizarla o llevarla a cabo ya que no convenía a los intereses de la clase explotadora y que más bien le era mejor mantenerla sumergida en un letargo, ahora, con el cambio realizado, con las puertas que antes se mantenían cerradas y que ahora que abren de par en par; mostrándonos los verdaderos objetivos que ella persigue, sus finalidades, así como para brindar los reconocimientos antes prohibidos, viene a ser para todos aquellos consecuentes con el proceso revolucionario en que se vive, como un punto estratégico en la nueva educación.
Resumo:
This study investigated the effect of different photoperiods (24 h of light (L):0 h of darkness (D); 20L:4D; 16L:8D; 12L:12D; and 8L:16D) on the reproduction and growth of Betta splendens. The results showed that spawning frequency was significantly higher in couples reared under 16L:8D and 12L:12D, in comparison with other treatments. The highest number of eggs per spawn was obtained under 16L:8D (544.76±375.23) and 12L:12D (471.13±261.52), and the lowest values were detected for 24L:0D (128.55±58.14) and 20L:4D (187.87±103.84). Fertility and fecundity also showed significantly higher average values in 16L:8D and 12L:12D when compared with 24L:0D and 20L:4D treatments. Egg volume and perivitelline space were significantly higher in 24L:0D treatments that showed the lowest numbers of eggs per spawn, while the vitelline volume did not show significant differences. Other variables such as breeders weight gain and condition factor (K) were not statistically different. Moreover, the final length varies according to photoperiod and gender. These results demonstrated a key role for the photoperiod upon B. splendens reproduction. The best reproductive performance is achieved under the photoperiods that best approached those that occur in spring and summer (16L:8D and 12L:12D), coinciding with their best seasons for reproduction.
Resumo:
During the past decade, there has been a dramatic increase by postsecondary institutions in providing academic programs and course offerings in a multitude of formats and venues (Biemiller, 2009; Kucsera & Zimmaro, 2010; Lang, 2009; Mangan, 2008). Strategies pertaining to reapportionment of course-delivery seat time have been a major facet of these institutional initiatives; most notably, within many open-door 2-year colleges. Often, these enrollment-management decisions are driven by the desire to increase market-share, optimize the usage of finite facility capacity, and contain costs, especially during these economically turbulent times. So, while enrollments have surged to the point where nearly one in three 18-to-24 year-old U.S. undergraduates are community college students (Pew Research Center, 2009), graduation rates, on average, still remain distressingly low (Complete College America, 2011). Among the learning-theory constructs related to seat-time reapportionment efforts is the cognitive phenomenon commonly referred to as the spacing effect, the degree to which learning is enhanced by a series of shorter, separated sessions as opposed to fewer, more massed episodes. This ex post facto study explored whether seat time in a postsecondary developmental-level algebra course is significantly related to: course success; course-enrollment persistence; and, longitudinally, the time to successfully complete a general-education-level mathematics course. Hierarchical logistic regression and discrete-time survival analysis were used to perform a multi-level, multivariable analysis of a student cohort (N = 3,284) enrolled at a large, multi-campus, urban community college. The subjects were retrospectively tracked over a 2-year longitudinal period. The study found that students in long seat-time classes tended to withdraw earlier and more often than did their peers in short seat-time classes (p < .05). Additionally, a model comprised of nine statistically significant covariates (all with p-values less than .01) was constructed. However, no longitudinal seat-time group differences were detected nor was there sufficient statistical evidence to conclude that seat time was predictive of developmental-level course success. A principal aim of this study was to demonstrate—to educational leaders, researchers, and institutional-research/business-intelligence professionals—the advantages and computational practicability of survival analysis, an underused but more powerful way to investigate changes in students over time.
Resumo:
Mycobacterium bovis is the etiological agent of tuberculosis in domestic and wild animals. Its involvement as a human pathogen has been highlighted again with the recent descriptions of transmission through dairy products (18), reactivation or primary infection in human immunodeficiency virus-infected patients (5), and association with meat industry workers, animal keepers, or hunters (3). Strains resistant to antituberculous drugs (M. bovis is naturally resistant to pyrazinamide) pose an additional risk (2). Several studies have demonstrated that mutations in target genes are associated with resistance to antituberculous drugs (4, 7, 10, 11, 16). However, most of them have been developed in Mycobacterium tuberculosis strains and limited data are available regarding M. bovis isolates. The aim of this study was to characterize by sequencing the main genes involved in antibiotic resistance in two multidrug-resistant (MDR) M. bovis isolates in a human outbreak detected in a hospital in Madrid that subsequently spread to several countries (5, 6, 15). The isolates were resistant to 11 drugs, but only their rpoB and katG genes have been analyzed so far (1, 14). We studied the first (93/R1) and last (95/R4) M. bovis isolates of this nosocomial outbreak, characterized by spoligotyping as SB0426 (hexacode 63-5F-5E-7F-FF-60 in the database at www.mbovis.org) (1, 13). Several genes involved in resistance to isoniazid (katG, ahpC, inhA, and the oxyR-ahpC intergenic region), rifampin (rpoB), streptomycin (rrs, rpsL), ethambutol (embB), and quinolones (gyrA) were studied. These genes, or fragments of genes, were amplified and sequenced as previously described (12). The sequence analysis revealed polymorphisms in five (ahpC, rpoB, rpsL, embB, and gyrA) out of nine analyzed genes (Table 1). Nucleotide substitutions in four genes cause a change in the encoded amino acid. Two additional synonymous mutations in ahpC and rpsL differentiated the first and last isolates from the outbreak.
Resumo:
Studies in Iowa have long documented the vulnerability of wells with less than 50 feet (15 meters) of confining materials above the source aquifer to contamination from nitrate and various pesticides. Recent studies in Wisconsin have documented the occurrence of viruses in untreated groundwater, even in wells considered to have little vulnerability to contamination from near-surface activities. In addition, sensitive methods have become available for analyses of pharmaceuticals and pesticides. This study represents the first comprehensive examination of contaminants of emerging concern in Iowa’s groundwater conducted to date, and one of the first conducted in the United States. Raw groundwater samples were collected from 66 public supply wells during the spring of 2013, when the state was recovering from drought conditions. Samples were analyzed for 206 chemical and biological parameters; including 20 general water-quality parameters and major ions, 19 metals, 5 nutrients, 10 virus groups, 3 species of pathogenic bacteria, 5 microbial indicators, 108 pharmaceuticals, 35 pesticides and pesticide degradates, and tritium. The wells chosen for this study represent a diverse range of ages, depths, confining material thicknesses, pumping rates, and land use settings. The most commonly detected contaminant group was pesticide compounds, which were present in 41% of the samples. As many as 6 pesticide compounds were found together in a sample, most of which were chloroacetanilide degradates. While none of the measured concentrations of pesticide compounds exceeded current benchmark levels, several of these compounds are listed on the U.S. Environmental Protection Agency’s Contaminant Candidate List and could be subject to drinking water standards in the future. Despite heavy use in the past decade, glyphosate was not detected, and its metabolite, aminomethylphosphonic acid, was only detected in two of 60 wells tested (3%) at the detection limit of 0.02 μg/L. Pharmaceutical compounds were detected in 35% of 63 samples. Of the 14 pharmaceuticals detected, six had reported concentrations above the method reporting limit, with the maximum reported concentration of 826 ng/L for acetaminophen. Diphenhydramine was the only pharmaceutical to have two detections above the reporting limit, at 24.5 and 145 ng/L. Eight pharmaceuticals had confirmed detections at concentrations below the method reporting limit. Caffeine was the most frequently detected pharmaceutical compound (25%), followed by the caffeine metabolite, 1,7-dimethylxanthine (16%). Microorganisms were detected in 21% of the wells using quantitative polymerase chain reaction methodologies. The most frequently detected microorganism was the pepper mild mottle virus (PMMV), a plant pathogen found in human waste. PMMV was detected in 17% of samples at concentrations ranging from 0.4 to 6.38 gene copies per liter. GII norovirus, human polyomavirus, bovine polyomavirus, and Campylobacter were also detected, while adenovirus, enterovirus, GI norovirus, swine hepatitis E, Salmonella, and enterohemmorhagic E. coli were not detected. No correlations were found between viruses or pathogenic bacteria and microbial indicators. Wells with less than 50 feet (15 meters) of confining material were shown to have greater incidence of surface-related contaminants; however, significant relationships (p<0.05) between confining layer thickness and contaminants were only found for nitrate and herbicides.
Resumo:
Purpose – The purpose of this paper is to propose a theoretical framework, based on contemporary philosophical aesthetics, from which principled assessments of the aesthetic value of information organization frameworks may be conducted.Design/methodology/approach – This paper identifies appropriate discourses within the field of philosophical aesthetics, constructs from them a framework for assessing aesthetic properties of information organization frameworks. This framework is then applied in two case studies examining the Library of Congress Subject Headings (LCSH), and Sexual Nomenclature: A Thesaurus. Findings – In both information organization frameworks studied, the aesthetic analysis was useful in identifying judgments of the frameworks as aesthetic judgments, in promoting discovery of further areas of aesthetic judgments, and in prompting reflection on the nature of these aesthetic judgments. Research limitations/implications – This study provides proof-of-concept for the aesthetic evaluation of information organization frameworks. Areas of future research are identified as the role of cultural relativism in such aesthetic evaluation and identification of appropriate aesthetic properties of information organization frameworks.Practical implications – By identifying a subset of judgments of information organization frameworks as aesthetic judgments, aesthetic evaluation of such frameworks can be made explicit and principled. Aesthetic judgments can be separated from questions of economic feasibility, functional requirements, and user-orientation. Design and maintenance of information organization frameworks can be based on these principles.Originality/value – This study introduces a new evaluative axis for information organization frameworks based on philosophical aesthetics. By improving the evaluation of such novel frameworks, design and maintenance can be guided by these principles.Keywords Evaluation, Research methods, Analysis, Bibliographic systems, Indexes, Retrieval languages
Resumo:
El interés de este caso de estudio es reflexionar sobre los procesos participativos en la formulación de instrumentos de planeamiento urbano y sus efectos en la gestión de las ciudades, particularmente en el espacio público. Esto se realiza partir de una revisión normativa en el presente y de algunos aspectos históricos de los procesos de “Participación Ciudadana” y del concepto de “Espacio Público” como escenarios propicios para que la ciudadanía aporte en las decisiones de planificación. Además, se plantea una revisión de cómo estos se constituyen en elementos estructurantes de la ciudad que la dotan de identidad, referentes simbólicos y apropiación ciudadana. Para este efecto, se realizó un balance de la estrategia de gestión social y participativa propuesta por el Plan Maestro de Espacio Público de 2005, con el fin de resaltar la importancia de la participación ciudadana en la gestión de los instrumentos de planificación con los que cuenta la ciudad y sus resultados en la gestión de espacio público en Bogotá.
Resumo:
Informe final de investigación en el que se define el contenido y se delimita el alcance de la autonomía financiera en los entes municipales en Colombia. Lo anterior, partiendo del premisa del artículo 311 de la C.N., en donde el Municipio es concebido como la “entidad fundamental de la división político-administrativa del Estado (…)”, al cual se le arrogó autonomía como derecho y como garantía institucional, para destinarlo a ser la piedra angular de la organización territorial del Estado, autonomía para la gestión de sus intereses que se manifiesta en la facultad de administrar sus recursos, establecer tributos y participar en las rentas nacionales; indicando que es éste el objeto de análisis del presente documento. La autonomía financiera en los municipios será analizada desde el punto de vista constitucional, normativo, jurisprudencial y doctrinal. Se demostrará que ésta es el resultado de la evolución en la forma en la cual se ha hecho y se hace el gasto público en Colombia, una transición que de manera simultánea al proceso político administrativo, ha demostrado que sólo a través del empoderamiento de los municipios puede concretarse la eficiencia como principio orientador del gasto público. Además, se examinará la autonomía financiera municipal en sus dos manifestaciones esenciales, es decir, revisando la forma en que los municipios obtienen sus recursos y la forma en que posteriormente los ejecutan.
Resumo:
El desarrollo tecnológico y la expansión de las formas de comunicación en Colombia, no solo trajeron consigo grandes beneficios, sino también nuevos retos para el Estado Moderno. Actualmente, la oferta de espacios de difusión de propaganda electoral ha aumentado, mientras persiste un marco legal diseñado para los medios de comunicación del Siglo XX. Por tanto, este trabajo no solo realiza un diagnóstico de los actuales mecanismos de control administrativo sobre la propaganda electoral en Internet, sino también propone unos mecanismos que garanticen los principios de la actividad electoral, siendo esta la primera propuesta en Colombia. Por el poco estudio del tema, su alcance es exploratorio, se basa en un enfoque jurídico-institucional. Se utilizaron métodos cualitativos de recolección de datos (trabajo de archivo y entrevistas) y de análisis (tipologías, comparaciones, exegesis del marco legal), pero también elementos cuantitativos como análisis estadísticos.