969 resultados para 6K-957-CB


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The physics of the operation of singe-electron tunneling devices (SEDs) and singe-electron tunneling transistors (SETs), especially of those with multiple nanometer-sized islands, has remained poorly understood in spite of some intensive experimental and theoretical research. This computational study examines the current-voltage (IV) characteristics of multi-island single-electron devices using a newly developed multi-island transport simulator (MITS) that is based on semi-classical tunneling theory and kinetic Monte Carlo simulation. The dependence of device characteristics on physical device parameters is explored, and the physical mechanisms that lead to the Coulomb blockade (CB) and Coulomb staircase (CS) characteristics are proposed. Simulations using MITS demonstrate that the overall IV characteristics in a device with a random distribution of islands are a result of a complex interplay among those factors that affect the tunneling rates that are fixed a priori (e.g. island sizes, island separations, temperature, gate bias, etc.), and the evolving charge state of the system, which changes as the source-drain bias (VSD) is changed. With increasing VSD, a multi-island device has to overcome multiple discrete energy barriers (up-steps) before it reaches the threshold voltage (Vth). Beyond Vth, current flow is rate-limited by slow junctions, which leads to the CS structures in the IV characteristic. Each step in the CS is characterized by a unique distribution of island charges with an associated distribution of tunneling probabilities. MITS simulation studies done on one-dimensional (1D) disordered chains show that longer chains are better suited for switching applications as Vth increases with increasing chain length. They are also able to retain CS structures at higher temperatures better than shorter chains. In sufficiently disordered 2D systems, we demonstrate that there may exist a dominant conducting path (DCP) for conduction, which makes the 2D device behave as a quasi-1D device. The existence of a DCP is sensitive to the device structure, but is robust with respect to changes in temperature, gate bias, and VSD. A side gate in 1D and 2D systems can effectively control Vth. We argue that devices with smaller island sizes and narrower junctions may be better suited for practical applications, especially at room temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this article was to evaluate the potential of in vivo zonal T2-mapping as a noninvasive tool in the longitudinal visualization of cartilage repair tissue maturation after matrix-associated autologous chondrocyte transplantation (MACT). Fifteen patients were treated with MACT and evaluated cross-sectionally, with a baseline MRI at a follow-up of 19.7 +/- 12.1 months after cartilage transplantation surgery of the knee. In the same 15 patients, 12 months later (31.7 +/- 12.0 months after surgery), a longitudinal 1-year follow-up MRI was obtained. MRI was performed on a 3 Tesla MR scanner; morphological evaluation was performed using a double-echo steady-state sequence; T2 maps were calculated from a multiecho, spin-echo sequence. Quantitative mean (full-thickness) and zonal (deep and superficial) T2 values were calculated in the cartilage repair area and in control cartilage sites. A statistical analysis of variance was performed. Full-tickness T2 values showed no significant difference between sites of healthy cartilage and cartilage repair tissue (p < 0.05). Using zonal T2 evaluation, healthy cartilage showed a significant increase from the deep to superficial cartilage layers (p < 0.05). Cartilage repair tissue after MACT showed no significant zonal increase from deep to superficial cartilage areas during baseline MRI (p > 0.05); however, during the 1-year follow-up, a significant zonal stratification could be observed (p < 0.05). Morphological evaluation showed no significant difference between the baseline and the 1-year follow-up MRI. T2 mapping seems to be more sensitive in revealing changes in the repair tissue compared to morphological MRI. In vivo zonal T2 assessment may be sensitive enough to characterize the maturation of cartilage repair tissue.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: This systematic review sought to determine the long-term clinical survival rates of single-tooth restorations fabricated with computer-aided design/computer-assisted manufacture (CAD/CAM) technology, as well as the frequency of failures depending on the CAD/CAM system, the type of restoration, the selected material, and the luting agent. MATERIALS AND METHODS: An electronic search from 1985 to 2007 was performed using two databases: Medline/PubMed and Embase. Selected keywords and well-defined inclusion and exclusion criteria guided the search. All articles were first reviewed by title, then by abstract, and subsequently by a full text reading. Data were assessed and extracted by two independent examiners. The pooled results were statistically analyzed and the overall failure rate was calculated by assuming a Poisson-distributed number of events. In addition, reported failures were analyzed by CAD/CAM system, type of restoration, restorative material, and luting agent. RESULTS: From a total of 1,957 single-tooth restorations with a mean exposure time of 7.9 years and 170 failures, the failure rate was 1.75% per year, estimated per 100 restoration years (95% CI: 1.22% to 2.52%). The estimated total survival rate after 5 years of 91.6% (95% CI: 88.2% to 94.1%) was based on random-effects Poisson regression analysis. CONCLUSIONS: Long-term survival rates for CAD/CAM single-tooth Cerec 1, Cerec 2, and Celay restorations appear to be similar to conventional ones. No clinical studies or randomized clinical trials reporting on other CAD/CAM systems currently used in clinical practice and with follow-up reports of 3 or more years were found at the time of the search.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES: The endocannabinoid system is an endogenous lipid signalling network comprising arachidonic-acid-derived ligands, cannabinoid (CB) receptors, transporters and endocannabinoid degrading enzymes. The CB(1) receptor is predominantly expressed in neurons but is also co-expressed with the CB(2) receptor in peripheral tissues. In recent years, CB receptor ligands, including Delta(9)-tetrahydrocannabinol, have been proposed as potential anticancer agents. KEY FINDINGS: This review critically discusses the pharmacology of CB receptor activation as a novel therapeutic anticancer strategy in terms of ligand selectivity, tissue specificity and potency. Intriguingly, antitumour effects mediated by cannabinoids are not confined to inhibition of cancer cell proliferation; cannabinoids also reduce angiogenesis, cell migration and metastasis, inhibit carcinogenesis and attenuate inflammatory processes. In the last decade several new selective CB(1) and CB(2) receptor agents have been described, but most studies in the area of cancer research have used non-selective CB ligands. Moreover, many of these ligands exert prominent CB receptor-independent pharmacological effects, such as activation of the G-protein-coupled receptor GPR55, peroxisome proliferator-activated receptor gamma and the transient receptor potential vanilloid channels. SUMMARY: The role of the endocannabinoid system in tumourigenesis is still poorly understood and the molecular mechanisms of cannabinoid anticancer action need to be elucidated. The development of CB(2)-selective anticancer agents could be advantageous in light of the unwanted central effects exerted by CB(1) receptor ligands. Probably the most interesting question is whether cannabinoids could be useful in chemoprevention or in combination with established chemotherapeutic agents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cannabinoid receptor 2 (CB(2) receptor) ligands are potential candidates for the therapy of chronic pain, inflammatory disorders, atherosclerosis, and osteoporosis. We describe the development of pharmacophore models for CB(2) receptor ligands, as well as a pharmacophore-based virtual screening workflow, which resulted in 14 hits for experimental follow-up. Seven compounds were identified with K(i) values below 25 microM. The CB(2) receptor-selective pyridine tetrahydrocannabinol analogue 8 (K(i) = 1.78 microM) was identified as a CB(2) partial agonist. Acetamides 12 (K(i) = 1.35 microM) and 18 (K(i) = 2.1 microM) represent new scaffolds for CB(2) receptor-selective antagonists and inverse agonists, respectively. Overall, our pharmacophore-based workflow yielded three novel scaffolds for the chemical development of CB(2) receptor ligands.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The identification of targets whose interaction is likely to result in the successful treatment of a disease is of growing interest for natural product scientists. In the current study we performed an exemplary application of a virtual parallel screening approach to identify potential targets for 16 secondary metabolites isolated and identified from the aerial parts of the medicinal plant RUTA GRAVEOLENS L. Low energy conformers of the isolated constituents were simultaneously screened against a set of 2208 pharmacophore models generated in-house for the IN SILICO prediction of putative biological targets, i. e., target fishing. Based on the predicted ligand-target interactions, we focused on three biological targets, namely acetylcholinesterase (AChE), the human rhinovirus (HRV) coat protein and the cannabinoid receptor type-2 (CB (2)). For a critical evaluation of the applied parallel screening approach, virtual hits and non-hits were assayed on the respective targets. For AChE the highest scoring virtual hit, arborinine, showed the best inhibitory IN VITRO activity on AChE (IC (50) 34.7 muM). Determination of the anti-HRV-2 effect revealed 6,7,8-trimethoxycoumarin and arborinine to be the most active antiviral constituents with IC (50) values of 11.98 muM and 3.19 muM, respectively. Of these, arborinine was predicted virtually. Of all the molecules subjected to parallel screening, one virtual CB (2) ligand was obtained, i. e., rutamarin. Interestingly, in experimental studies only this compound showed a selective activity to the CB (2) receptor ( Ki of 7.4 muM) by using a radioligand displacement assay. The applied parallel screening paradigm with constituents of R. GRAVEOLENS on three different proteins has shown promise as an IN SILICO tool for rational target fishing and pharmacological profiling of extracts and single chemical entities in natural product research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION Patients who are lost to follow-up (LTFU) while on antiretroviral therapy (ART) pose challenges to the long-term success of ART programs. We describe the extent to which patients considered LTFU are misclassified as true disengagement from care when they are still alive on ART and explain reasons for ART discontinuation using our active tracing program to further improve ART retention programs and policies. METHODS We identified adult ART patients who missed clinic appointment by more than 3 weeks between January 2006 and December 2010, assuming that such patients would miss their doses of antiretroviral drugs. Patients considered LTFU who consented during ART registration were traced by phone or home visits; true ART status after tracing was documented. Reasons for ART discontinuation were also recorded for those who stopped ART. RESULTS Of the 4,560 suspected LTFU cases, 1,384 (30%) could not be traced. Of the 3,176 successfully traced patients, 952 (30%) were dead and 2,224 (70%) were alive, of which 2,183 (99.5%) started ART according to phone-based self-reports or physical verification during in-person interviews. Of those who started ART, 957 (44%) stopped ART and 1,226 (56%) reported still taking ART at the time of interview by sourcing drugs from another clinic, using alternative ART sources or making brief ART interruptions. Among 940 cases with reasons for ART discontinuations, failure to remember (17%), too weak/sick (12%), travel (46%), and lack of transport to the clinic (16%) were frequently cited; reasons differed by gender. CONCLUSION The LTFU category comprises sizeable proportions of patients still taking ART that may potentially bias retention estimates and misdirect resources at the clinic and national levels if not properly accounted for. Clinics should consider further decentralization efforts, increasing drug allocations for frequent travels, and improving communication on patient transfers between clinics to increase retention and adherence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To make use of the isotope ratio of nonexchangeable hydrogen (δ2Hn (nonexchangeable)) of bulk soil organic matter (SOM), the mineral matrix (containing structural water of clay minerals) must be separated from SOM and samples need to be analyzed after H isotope equilibration. We present a novel technique for demineralization of soil samples with HF and dilute HCl and recovery of the SOM fraction solubilized in the HF demineralization solution via solid-phase extraction. Compared with existing techniques, organic C (Corg) and organic N (Norg) recovery of demineralized SOM concentrates was significantly increased (Corg recovery using existing techniques vs new demineralization method: 58% vs 78%; Norg recovery: 60% vs 78%). Chemicals used for the demineralization treatment did not affect δ2Hn values as revealed by spiking with deuterated water. The new demineralization method minimized organic matter losses and thus artificial H isotope fractionation, opening up the opportunity to use δ2Hn analyses of SOM as a new tool in paleoclimatology or geospatial forensics.