1000 resultados para 680602 Design
Resumo:
Relevant to the study of people’s attitudes towards public transport use is the consideration to the role of technology as part of the travel experience. Technologies aim to enhance daily tasks but tend to change the way people interact with products and can be perceived as difficult to use. This is critical in the context of “public use” where products and services are to be used by the population at large: adults, children, elderly, people with disabilities, and tourists. From different perspectives, the topic of users and the use of technologies have been studied in the social sciences and human computer interaction fields; however, earlier approaches fail to address the ways in which experiential knowledge informs people’s interactions with products and technologies, and how such information could guide the design of future technologies. This paper describes a pilot study, part of a larger ongoing exploratory research that investigates people’s experiences with infrastructure, systems, and technologies in the context of public transport. The methodological approach included focus groups, field observations, and retrospective verbal reports. At this stage, the study found that four context led factors were the primary source of reference informing participants’ actions and interactions; they are: (i) context >> experience, (ii) context >> interface, (iii) context >> knowledge, (iv) context >> emotion.
Resumo:
This paper presents an object-oriented world model for the road traffic environment of autonomous (driver-less) city vehicles. The developed World Model is a software component of the autonomous vehicle's control system, which represents the vehicle's view of its road environment. Regardless whether the information is a priori known, obtained through on-board sensors, or through communication, the World Model stores and updates information in real-time, notifies the decision making subsystem about relevant events, and provides access to its stored information. The design is based on software design patterns, and its application programming interface provides both asynchronous and synchronous access to its information. Experimental results of both a 3D simulation and real-world experiments show that the approach is applicable and real-time capable.
Resumo:
A robust and reliable grid power interface system for wind turbines using a permanent-magnet synchronous generator (PMSG) is proposed in this paper, where an integration of a generator-side three-switch buck-type rectifier and a grid-side Z-source inverter is employed as a bridge between the generator and the grid. The modulation strategy for the proposed topology is developed from space-vector modulation and Z-source network operation principles. Two PMSG control methods, namely, unity-power-factor control and rotor-flux-orientation control (Id = 0), are studied to establish an optimized control scheme for the generator-side three-switch buck-type rectifier. The system control scheme decouples active- and reactive-power control through voltage-oriented control and optimizes PMSG control for the grid- and generator-side converters independently. Maximum power point tracking is implemented by adjusting the shoot-through duty cycles of the Z-source network. The design considerations of the passive components are also provided. The performances and practicalities of the designed architecture have been verified by simulations and experiments.
Resumo:
Various tools have been developed to assist designers in making interfaces easier to use although none yet offer a complete solution. Through previous work we have established that intuitive interaction is based on past experience. From this we have developed theory around intuitive interaction, a continuum and a conceptual tool for intuitive use. We then trialled our tool. Firstly, one designer used the tool to design a camera. Secondly, seven groups of postgraduate students re-designed various products using our tool. We then chose one of these - a microwave – and prototyped the new and original microwave interfaces on a touchscreen. We tested them on three different age groups. We found that the new design was more intuitive and rated by participants as more familiar. Therefore, design interventions based on our intuitive interaction theory can work. Work is ongoing to develop the tool further.
Resumo:
This project develops new knowledge on the full range of activities and interactions that make up airport passengers' retail experiences. The practical application of this new knowledge will improve the design of airport retail environments and will, in turn, improve passenger experiences, leading to further growth in the airport retail market. The novel methodological approach developed allowed for a new and deeper understanding of how passengers actually experience airport retail environments. Four significant outcomes were discovered: (i) the categorisation of the full range of retail activities and interactions passengers actually undertake, (ii) a new understanding of how passengers use and experience their free airport time, (iii) two new passenger market segments, and (iv) two passenger retail experience tools, with these identifying the broad range of airport-specific factors which influence passengers retail experiences.
Resumo:
Differential settlement at the bridge approach between the deck and rail track on ground is often considered as a source of challenging technical and economical problem. This caused by the sudden stiffness changes between the bridge deck and the track on ground, and changes in soil stiffness of backfill and sub-grade with soil moisture content and loading history. To minimise the negative social and economic impacts due to poor performances of railway tracks at bridge transition zones, it is important, a special attention to be given at design, construction and maintenance stages. It is critically challenging to obtain an appropriate design solution for any given site condition and most of the existing conventional design approaches are unable to address the actual on-site behaviour due to their inherent assumptions of continuity and lack of clarifying of the local effects. An evaluation of existing design techniques is considered to estimate their contributions to a potential solution for bridge transition zones. This paper analyses five different approaches: the Chinese Standard, the European Standard with three different approaches, and the Australian approach. Each design approach is used to calculate the layer thicknesses, accounting critical design features such as the train speed, the axle load, the backfill subgrade condition, and the dynamic loading response. Considering correlation between track degradation and design parameters, this paper concludes that there is still a need of an optimised design approach for bridge transition zones.
Resumo:
This paper reports on a study of the voluntary provision of inclusive housing. The impetus for the study is the Livable Housing Design initiative, an agreement among Australian housing industry and community leaders in 2010 to a national guideline and voluntary strategy with a target to provide minimum access features in all new housing by 2020. Situated in and around Brisbane, Australia, the study problematises the assumption that the housing industry will respond voluntarily; an assumption which this study concludes is unfounded. The Livable Housing Design initiative asks individual agents to consider the needs of people beyond the initial contract, to proceed with objective reasoning and to do the right thing voluntarily. Instead, the study found that interviewees focused on their immediate contractual obligations, were reluctant to change established practices and saw little reason to do more than was legally required of them. This paper argues that the highly-competitive and risk-averse nature of the industry works against a voluntary approach for inclusive housing and, if the 2020 target of the Livable Housing Design initiative is to be reached, a mandated approach through legislation will be necessary. The Livable Housing Design initiative, however, has an important role to play in preparing the Australian housing industry to accept further regulation.
Resumo:
This thesis is a study of new design methods for allowing evolutionary algorithms to be more effectively utilised in aerospace optimisation applications where computation needs are high and computation platform space may be restrictive. It examines the applicability of special hardware computational platforms known as field programmable gate arrays and shows that with the right implementation methods they can offer significant benefits. This research is a step forward towards the advancement of efficient and highly automated aircraft systems for meeting compact physical constraints in aerospace platforms and providing effective performance speedups over traditional methods.
Resumo:
Social contexts are possible information sources that can foster connections between mobile application users, but they are also minefields of privacy concerns and have great potential for misinterpretation. This research establishes a framework for guiding the design of context-aware mobile social applications from a socio-technical perspective. Agile ridesharing was chosen as the test domain for the research because its success relies upon effectively connecting people through mobile technologies.
Resumo:
In this chapter we will make the transition towards the design of business models and the related critical issues. We develop a model that helps us understand the causalities that play a role in understanding the viability and feasibility of the business models, i.e. long-term profitability and market adoption. We argue that designing viable business models requires balancing the requirements and interests of the actors involved, within and between the various business model domains. Requirements in the service domain guide the design choices in the technology domain, which in turn affect network formation and the financial arrangements. It is important to understand the Critical Design Issues (CDIs) involved in business models and their interdependencies. In this chapter, we present the Critical Design Issues involved in designing mobile service business models, and demonstrate how they are linked to the Critical Success Factors (CSFs) with regard to business model viability. This results in a causal model for understanding business model viability, as well as providing grounding for the business model design approach outlined in Chapter 5.
Resumo:
Australia is undergoing a critical demographic transition: the population is ageing. By 2050, one in four Australians will be older than 65 years and by 2031, the number of older Australians requiring residential aged care will increase 63%, to 1.4 million (ABS, 2005). In anticipation of this global demographic transition, the World Health Organisation has advocated ‘active ageing’, identifying health, participation and security as the three key factors that enhance quality of life for people as they age (WHO, 2002). While there is considerable discussion and acceptance of active ageing principles, little is known about the experience of ‘active ageing’ for older Australians who live in Residential Aged Care Facilities (RACF). This research addresses this knowledge gap by exploring the key facilitators and barriers to quality of life and active ageing in aged care from the perspective of aged care residents (n=12). To do this, the project documented the initial expectations and daily life experience of new residents living in a RACF over a one-year period. Combined with in-depth interviews and surveys, the project utilised Photovoice methodology - where participants used photography to record their lived experiences. The initial findings suggest satisfaction with living in aged care centers around five key themes; resident’s mental attitude to living in aged care, forming positive peer and staff relationships, self-determination and maintaining independence, opportunities to participate in interesting activities, and living in a safe and comfortable physical environment. This paper reports on the last of these five key themes, focusing on the role of design in facilitating quality of life, specifically: “living within these walls” – safety, comfort and the physical environment.
Resumo:
Education in the 21st century demands a model for understanding a new culture of learning in the face of rapid change, open access data and geographical diversity. Teachers no longer need to provide the latest information because students themselves are taking an active role in peer collectives to help create it. This paper examines, through an Australian case study entitled ‘Design Minds’, the development of an online design education platform as a key initiative to enact a government priority for statewide cultural change through design-based curriculum. Utilising digital technology to create a supportive community, ‘Design Minds’ recognises that interdisciplinary learning fostered through engagement will empower future citizens to think, innovate, and discover. This paper details the participatory design process undertaken with multiple stakeholders to create the platform. It also outlines a proposed research agenda for future measurement of its value in creating a new learning culture, supporting regional and remote communities, and revitalising frontline services. It is anticipated this research will inform ongoing development of the online platform, and future design education and research programs in K-12 schools in Australia.
Resumo:
Early on Christmas morning 1974, tropical cyclone Tracy devastated the city of Darwin leaving only 6 per cent of the city’s housing habitable and instigating the evacuation of 75 per cent of its population. The systematic failure of so much of Darwin’s building stock led to a humanitarian disaster that proved the impetus for an upheaval of building regulatory and construction practices throughout Australia. Indeed, some of the most enduring legacies of Tracy have been the engineering and regulatory steps taken to ensure the extent of damage would not be repeated. This chapter explores these steps and highlights lessons that have led to a national building framework and practice at the fore of wind-resistant design internationally.
Resumo:
This paper addresses the problem of determining optimal designs for biological process models with intractable likelihoods, with the goal of parameter inference. The Bayesian approach is to choose a design that maximises the mean of a utility, and the utility is a function of the posterior distribution. Therefore, its estimation requires likelihood evaluations. However, many problems in experimental design involve models with intractable likelihoods, that is, likelihoods that are neither analytic nor can be computed in a reasonable amount of time. We propose a novel solution using indirect inference (II), a well established method in the literature, and the Markov chain Monte Carlo (MCMC) algorithm of Müller et al. (2004). Indirect inference employs an auxiliary model with a tractable likelihood in conjunction with the generative model, the assumed true model of interest, which has an intractable likelihood. Our approach is to estimate a map between the parameters of the generative and auxiliary models, using simulations from the generative model. An II posterior distribution is formed to expedite utility estimation. We also present a modification to the utility that allows the Müller algorithm to sample from a substantially sharpened utility surface, with little computational effort. Unlike competing methods, the II approach can handle complex design problems for models with intractable likelihoods on a continuous design space, with possible extension to many observations. The methodology is demonstrated using two stochastic models; a simple tractable death process used to validate the approach, and a motivating stochastic model for the population evolution of macroparasites.
Resumo:
This paper presents the fire performance results of light gauge steel frame (LSF) walls lined with single and double plasterboards, and externally insulated with rock fibre insulation as obtained using a finite element analysis based parametric study. A validated numerical model was used to study the influence of various fire curves developed for a range of compartment characteristics. Data from the parametric study was utilized to develop a simplified method to predict the fire resistance ratings of LSF walls exposed to realistic design fire curves. Further, this paper also presents the details of suitable fire design rules based on current cold-formed steel standards and the modifications proposed by previous researchers. Of these the recently developed design rules by Gunalan and Mahendran [1] were investigated to determine their applicability to predict the axial compression strengths and fire resistance ratings (FRR) of LSF walls exposed to realistic design fires. Finally, the stud failure times obtained from fire design rules and finite element studies were compared for LSF walls lined with single and double plasterboards, and externally insulated with rock fibres under realistic design fire curves.