974 resultados para 410 Lingüística
Resumo:
对爆源近区地下混凝土管道结构在爆炸冲击载荷作用下的动力学响应开展探索性实验研究。选用钢筋混凝土管道模拟地下结构,尺寸为:$\phi_{\hbox{内}}$800mm$\times$2000mm$\times$100mm。通过实验研究定量确定爆炸振动波载荷对地下结构产生的振动效应;定性确定爆炸冲击波载荷对地下管道结构和混凝土材料产生的动态破坏效应。爆炸当量分别为50 g和100 g TNT,爆炸距离取为0.1,0.3,1,7和10m。实验主要涉及地下管道结构在小药量爆炸点近区的破坏效应与爆炸药量和爆炸距离间关系的确定;混凝土材料破坏行为与药量和爆炸距离关系的确定;爆炸冲击波的影响范围以及爆炸振动波的有效影响范围与爆源特性的关系及爆炸响应函数的确定。从小当量地下结构爆炸实验观察到:地下结构的爆炸振动响应,即振动波波长和频率不同于土介质地表的波长和频率。与地表面上建筑物的波长和频率相比,振动波长持续作用时间明显缩短,且振动频率显著提高。这与地下结构的爆炸动力学响应,特别是爆源近距离的结构动力学响应存在着本质的区别。不同的爆炸距离和当量,地下爆炸对地下结构可以产生振动和冲击两种不同特征的动力学效应。在折算距离大于0.22$\sim$0.25 m/W$^{1/3}$时,100 g TNT当量的爆炸以产生振动效应为主。在折算距离小于0.22$\sim$0.25 m/W$^{1/3}$时,爆炸主要产生冲击效应;在爆炸距离小于1.5m/W$^{1/3}$时,地下爆炸振动波对结构产生的动力学响应的明显特征是管道结构发生径向变形。而且,管道上与爆源最近点是管道变形的对称点。管道的轴向和环向动力响应表现为相应方向上的刚体振动。在爆炸距离大于1.5 m/W$^{1/3}$,如等于2.15m/W1/3的情况下,爆炸振动波对管道结构产生的动力学响应主要表现为整体振动。结构的变形特征基本消失;地下爆炸冲击波载荷对爆源近区管道结构和混凝土材料可以产生三种破坏效应:在折算距离等于0.065 m/W$^{1/3}$时,低强度的冲击波载荷仅产生结构破坏效应。实验中观察到混凝土管道只沿其轴线方向上形成贯穿性裂纹,管道内外表面均无损伤和破碎现象;当折算距离等于0.027 m/W1/3时,较强冲击波载荷既引起管道的结构破坏,也产生混凝土材料的破坏。这时观察到沿混凝土管道轴线方向上,以及与轴线成30$^\circ$至50$^\circ$范围内形成贯穿性裂纹。同时在管道内表面出现直径约为210 mm的层裂区,最大层裂厚度约为8$\sim$12 mm;当折算距离等于0.022 m/W$^{1/3}$时,爆炸强冲击波载荷主要引起的混凝土材料破坏形式表现为破碎。即在管道上以爆源最近点为中心形成直径约为370 mm的贯穿性孔洞,还观察到该孔洞周边不同方向上有长度为230$\sim$410 mm不等的数条细裂纹形成。
Resumo:
In this paper, bioconversion of trans-cinnamic acid(t-Ca)to L-phenylalanine (L-phe) has been investigated by using immobilized yeast cells with induced L-phe Ammonia-lyase(PAL, EC.4.3.1.5) as biocatalysts. The contents are the following. (1) Thirty strains of yeasts, including two genera (Rhodotorula, Sporobolomyces), six species (R. glutinis R. minuta,R.rubra,R.sineses,R.roseus and S.salmonicolor)were screened for their ability to converse the substrates, t-Ca and ammonia, to the product, L-phe, by using yeast cells as biocatalyst, and primary evaluation for PAL activity of the selected strains was investigated. From the results of the screening experiments, it was found that 22 strains were able to produce L-phe from t-Ca with the range of conversion yield from 2% to 67%. Studies on PAL formation time course during cultivation show that the maximum PAL activity of several different strains ranges from 2.3 to 14.4×10-3U/mg cell dry weight. The biomass of tested strains at their maximum enzyme activity is also greatly varied. (2)One of the selected strains, R. rubra as 2.166, was used for immobilized cells as biocatalysts to produce L-phe. The optimum conversion conditions and effective stablization agents were investigated. The results shown that polyacrylamide gel was chosen as a suitable matrix for immobilization of the yeast cells, and it can retain 88% of the PAL activity in the reverse direction at the following reactive conditions: [t-Ca]: 34mM. [NH4OH]: 6.OM.PH10.00, temperature: 30℃. (3) The effects of various kinds of effectors on the production of L-phe were also examined. Membrane permeabilizing agents can stimulate L-phe synthesis, but make the stability of PAL decline greatly. Polyalchoholic agents and glutamic acid were very effective for the stabilization of PAL. At the presence of glutamic acid (5%), the half life of L-phe productivity with the immobilized cells was extended to 192 hours, which was much higher than most of that having been reproted, while the half life of resting cells was only about 15 hours. (4) Use of initial velocity studies on the kinetics of enzyme-catalized reaction indicated that the apparent Km value was 13.0mM for the immobilized cells, and 4.8mM for the resting cells. Thermostability of the immobilized cells was better than the resting cells. Fluid bed bioreactor is more effective than batch bioreator in prolonging the thermostability of the biocatalysts. (5) CGA- 688 resin column chromatographic procedure was employed in the isolation and purification of L-phe, t-Ca and other substances from the reactire mixture. (6) Preparative-scale production of L-phe on a level of gram amount by immobilized cells from the culture broth of R. rubra AS2.166 allowed for the conversion yield with 30%. The characteristic physico-chemical criteria (including melting point, optical activity, elements analysis, IR, NMR) are the same with the standard L-phe. 本文报告了利用诱导的苯丙氨酸解氨酶 (PAL.EC.4.3.1.5)催化反式肉桂酸(t-Ca)氨加 成制备L-苯丙氨酸(L-phe)的研究,主要内容为:(1) 我们搜集了三十株酵母菌株,利用全细胞转化t-Ca生成L-phe的能力进行了直 接筛选,并对其PAL活性水平进行了初步评估研究。研究结果表明,其中22株酵母具有转化t-Ca生产L-phe的能力,它们包括 Rhodotorula glutinis,R.rubra, R.sineses 和Sporobolomyces roseus 的菌株,转化率在2-67%。细胞生长和PAL形成过程的研究 表明,不同菌株PAL最大活力在2.3-14.4×10-3U/mg 细胞干重,达到最大PAL活性时各株酵母的生长情况也极不一致。(2) 利用筛 选出的一株深红酵母R.rubra AS2.166 作为供试菌株,研究了细胞固定化条件下生物转化的最适条件及PAL在固定化条件下的稳定 性。结果表明以聚丙烯酰胺凝胶包埋法较为理想,能使细胞合成L-phe活力保持88%,最适t-Ca浓度为34mM,最适NH4OH浓度为6M,最 适PH10.0,最适温度45℃。(3) 多种效应物对L-phe 合成的影响研究表明:表面活性剂能刺激L-phe的合成,但使PAL稳定性下降。 多羟基化合物及Glu对PAL的稳定十分有效在有Glu存在下,能使固定化细胞合成L-phe的半寿期达192小时左右,高于大部分现已报 导的固定化结果。(4) 用初速度法研究了深红酵母AS2.166中PAL的酶促反应特征,测得固定化细胞对t-Ca的表观米氏常数Km为 13.0mM,全细胞为4.8mM,细胞固定后热稳定性提高。(5) 建立了适合低浓度分离纯化产物与底物的聚苯乙烯大孔树脂柱层析技术 ,能使L-phe与t-Ca及产物混合物中其它成分有效分开。(6) 利用固定化的R.rubra AS2.166细胞所做的制备实验能够使L-phe的产 率达到30%左右,其主要的理化指标(包括熔点、比旋光度、元素分析、IR、NMR等)与标准L-phe一致。
Resumo:
介绍了兰州重离子加速器冷却储存环(HeavyIonResearchedFacilityofLanzhouCoolingStoringRing,简称HIRFL-CSR)六极磁铁电源工作原理及设计过程,研制了一台样机,介绍了调试过程中碰到的主要问题及其解决方法,并给出了实验结果。电源跟踪误差小于±4×10-4,满足了HIRFL-CSR的需要。
Resumo:
本文报道低能高电荷Ar12+、Ar13+、Ar14+离子与金属Mo表面作用过程中Mo原子受激发射X射线和X射线强度随入射能量变化的实验结果。结果表明,低速高电荷离子与金属表面原子相互作用可有效地激发靶原子或靶离子内壳层电子而发射X射线。
Resumo:
IEECAS SKLLQG
Resumo:
通过1 3 0 Te(1 6O ,5nγ) 1 4 1 Nd反应布居了1 4 1 Nd的高自旋态能级 .对反应产生的在束γ射线进行了γ射线单谱和γ -γ符合测量 .建立了激发能达 76 1 4 .5keV的1 4 1 Nd能级纲图 ,新发现了 1 2条γ射线和 1 5个能级 .基于实验测量的γ跃迁各向异性 ,建议了1 4 1 Nd部分能级的自旋值 .用一个h1 1 2 价中子空穴与1 4 2 Nd核芯晕态的耦合可以定性地解释1 4 1 Nd的能级结构
Resumo:
采用距离相关紧束缚的分子动力学模型 ,在不同初始温度T0 =0 .0 2K、50K、10 0K、2 0 0K、30 0K、4 0 0K时 ,对Na8+Na8在质心系轰击能量为 0 .0 12 5eV/n的中心碰撞时的反应动力学进行了研究。发现团簇碰撞动力学与初始温度密切相关。在T0 <10 0K时 ,初始温度不影响反应动力学 ,而在T0 =4 0 0K时将对反应动力学有强烈影响。
Resumo:
The status of the HIRFL (Heavy Ion Facility in Lanzhou) - Cooler Storage Ring (CSR) at the IMP is reported. The main physics goals at the HIRFL-CSR are the researches on nuclear structure and decay property, EOS of nuclear matter, hadron physics, highly charged atomic physics, high energy density physics, nuclear astrophysics, and applications for cancer therapy, space industries, materials and biology sciences. The HIRFL-CSR is the first ion cooler-storage-ring system in China, which consists of a main ring (CSRm), an experimental ring (CSRe) and a radioactive beamline (RIBLL2). The two existing cyclotrons SFC (K=70) and SSC (K=450) are used as its injectors. The 7MeV/u12C6+ ions were stored successfully in CSRm with the stripping injection in January 2006. After that, realized were the accelerations of C-12(6+), Ar-36(18+), Kr-78(28+) and Xe-129(27+) ions with energies of 1GeV/u, 1GeV/u, 450 MeV/u and 235 MeV/u, respectively, including accumulation, electron cooling and acceleration. In 2008, the first two isochronous mass measurement experiments with the primary beams of Ar-36(18+) and Kr-78(28+) were performed at CSRe with the Delta p/p similar to 10(-5).
Resumo:
从采集的土壤样品中分离筛选出一株碱性蛋白酶产生菌G-41,经16S rRNA分子鉴定为芽孢杆菌属菌株。该菌株在发酵培养基中能产生较高产量的胞外碱性蛋白酶(1.7×104U/mL)。以G-41为出发菌株,对其进行重离子辐照诱变处理,获得突变株G-41-68,将该突变株再次经重离子诱变,从大量突变株中筛选出碱性蛋白酶高产菌株15Gy-54,其酶活力达到6.22×104U/mL。与出发菌株相比较,突变株G-41-68和15Gy-54的酶活力分别提高了1.58倍和2.65倍。对突变株15Gy-54的发酵条件进行了优化研究,结果表明,该菌株的碱性蛋白酶活力得到进一步提高,达到7.18×104U/mL,其最适发酵条件为:培养基(g/100mL)为胰蛋白胨1、酵母膏0.5、乳糖5、Na2HPO4·12H2O0.4、KH2PO40.03、Na2CO30.1、MgSO40.0481(4×10-3mol/L)、pH8.0,培养温度41℃,振荡培养时间42-48h。实验结果表明,重离子辐照诱变技术是一种非常有效的微生物诱变育种新技术。
Resumo:
The heat capacities of chrysanthemic acid in the temperature range from 80 to 400 K were measured with a precise automatic adiabatic calorimeter. The chrysanthemic acid sample was prepared with the purity of 0.9855 mole fraction. A solid-liquid fusion phase transition was observed in the experimental temperature range. The melting point, T-m, enthalpy and entropy of fusion, Delta(fus)H(m), Delta(fus)S(m), were determined to be 390.741 +/- 0.002 K, 14.51 +/- 0.13 kJ mol(-1), 37.13 +/- 0.34 J mol(-1) K-1, respectively. The thermodynamic functions of chrysanthemic acid, H-(T)-H-(298.15), S-(T)-S-(298.15) and G((T))-G((298.15)) were reported with a temperature interval of 5 K. The TG analysis under the heating rate of 10 K min(-1) confirmed that the thermal decomposition of the sample starts at ca. 410 K and terminates at ca. 471 K. The maximum decomposition rate was obtained at 466 K. The purity of the sample was determined by a fractional melting method.