992 resultados para 35DR20020113-1-track


Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rangitawa Tephra is an important stratigraphic marker in mid-Pleistocene marine and terrestrial sequences in New Zealand and adjacent ocean basins. Zircon fission track ages (ZFTA) on Rangitawa Tephra from five sites in the southern North Island yield mean site ages in the range 0.34 to 0.40 Ma with a weighted mean of 0.35 + 0.04 Ma (1 sigma). On the basis of glass shard major-element chemistry, ferromagnesian mineralogy, ZFTA and similarity of paleomagnetic dates of proposed tephra correlalives in deep-sea cores, it is concluded that Rangitawa Tephra represents a major eruptive event in the Taupo Volcanic Zone most probably associated with eruption of the Whakamaru-group ignimbrites (0.35 0.39 Ma) or less likely the Paeroa Range Group Ignimbrites (0.36 -0.38 Ma). Pollen analyses from two onshore sites, together with regional loess stratigraphy, show that Rangitawa Tephra was erupted during a glacial period. The ZFTA and previously reported oxygen isotope data from DSDP Site 594 indicate that Rangitawa Tephra was erupted near the end of oxygen isotope stage 10.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydrology, source region, and timing of precipitation are important controls on the climate of the Great Plains of North America and the composition of terrestrial ecosystems. Moisture delivered to the Great Plains varies seasonally and predominately derives from the Gulf of Mexico/Atlantic Ocean with minor contributions from the Pacific Ocean and Arctic region. For this work, we evaluate long-term relationships for the past ~ 35 million years between North American hydrology, climate, and floral change, using isotopic records and average carbon chain lengths of higher plant n-alkanes from Gulf of Mexico sediments (DSDP Site 94). We find that carbon isotope values (d13C) of n-alkanes, corrected for variations in the d13C value of atmospheric CO2, provide minor evidence for contributions of C4 plants prior to the Middle Miocene. A sharp spike in C4 input is identified during the Middle Miocene Climatic Optimum, and the influence of C4 plants steadily increased during the Late Miocene into the Pleistocene - consistent with other North American records. Chain-length distributions of n-alkanes, indicative of the composition of higher plant communities, remained remarkably constant from 33 to 4 Ma. However, a trend toward longer chain lengths occurred during the past 4 million years, concurrent with an increase in d13C values, indicating increased C4 plant influence and potentially aridity. The hydrogen isotope values (dD) of n-alkanes are relatively invariant between 33 and 9 Ma, and then become substantially more negative (75 per mil) from 9 to 2 Ma. Changes in the plant community and temperature of precipitation can solely account for the observed variations in dD from 33 to 5 Ma, but cannot account for Plio-Pleistocene dD variations and imply substantial changes in the source region of precipitation and seasonality of moisture delivery. We posit that hydrological changes were linked to tectonic and oceanographic processes including the shoaling and closure of the Panamanian Seaway, amplification of North Atlantic Deep Water Production and an associated increase of meridional winds. The southerly movement of the Intertropical Convergence Zone near 4 Ma allowed for the development of a near-modern pressure/storm track system, driving increased aridity and changes in seasonality within the North American interior.