982 resultados para 342-U1409B
Resumo:
Germin and germin-like proteins (GLPs) are encoded by a family of genes found in all plants. They are part of the cupin superfamily of biochemically diverse proteins, a superfamily that has a conserved tertiary structure, though with limited similarity in primary sequence. The subgroups of GLPs have different enzyme functions that include the two hydrogen peroxide-generating enzymes, oxalate oxidase (OxO) and superoxide dismutase. This review summarizes the sequence and structural details of GLPs and also discusses their evolutionary progression, particularly their amplification in gene number during the evolution of the land plants. In terms of function, the GLPs are known to be differentially expressed during specific periods of plant growth and development, a pattern of evolutionary subfunctionalization. They are also implicated in the response of plants to biotic (viruses, bacteria, mycorrhizae, fungi, insects, nematodes, and parasitic plants) and abiotic (salt, heat/cold, drought, nutrient, and metal) stress. Most detailed data come from studies of fungal pathogenesis in cereals. This involvement with the protection of plants from environmental stress of various types has led to numerous plant breeding studies that have found links between GLPs and QTLs for disease and stress resistance. In addition the OxO enzyme has considerable commercial significance, based principally on its use in the medical diagnosis of oxalate concentration in plasma and urine. Finally, this review provides information on the nutritional importance of these proteins in the human diet, as several members are known to be allergenic, a feature related to their thermal stability and evolutionary connection to the seed storage proteins, also members of the cupin superfamily.
Resumo:
Rationale The hyperphagic effect of ∆9-tetrahydrocannabinol (∆9THC) in humans and rodents is well known. However, no studies have investigated the importance of ∆9THC composition and any influence other non-∆9THC cannabinoids present in Cannabis sativa may have. We therefore compared the effects of purified ∆9THC, synthetic ∆9THC (dronabinol), and ∆9THC botanical drug substance (∆9THC-BDS), a ∆9THC-rich standardized extract comparable in composition to recreationally used cannabis. Methods Adult male rats were orally dosed with purified ∆9THC, synthetic ∆9THC, or ∆9THC-BDS, matched for ∆9THC content (0.34–2.68 mg/kg). Prior to dosing, subjects were satiated, and food intake was recorded following ∆9THC administration. Data were then analyzed in terms of hourly intake and meal patterns. Results All three ∆9THC substances tested induced significant hyperphagic effects at doses ≥0.67 mg/kg. These effects included increased intake during hour one, a shorter latency to onset of feeding and a greater duration and consumption in the first meal. However, while some differences in vehicle control intakes were observed, there were significant, albeit subtle, differences in pattern of effects between the purified ∆9THC and ∆9THC-BDS. Conclusion All ∆9THC compounds displayed classical ∆9THC effects on feeding, significantly increasing short-term intake whilst decreasing latency to the first meal. We propose that the subtle adjustment to the meal patterns seen between the purified ∆9THC and ∆9THC-BDS are due to non-∆9THC cannabinoids present in ∆9THC-BDS. These compounds and other non-cannabinoids have an emerging and diverse pharmacology and can modulate ∆9THC-induced hyperphagia, making them worth further investigation for their therapeutic potential.
Resumo:
Biosecurity is a great challenge to policy-makers globally. Biosecurity policies aim to either prevent invasions before they occur or to eradicate and/or effectively manage the invasive species and diseases once an invasion has occurred. Such policies have traditionally been directed towards professional producers in natural resource based sectors, including agriculture. Given the wide scope of issues threatened by invasive species and diseases, it is important to account for several types of stakeholders that are involved. We investigate the problem of an invasive insect pest feeding on an agricultural crop with heterogeneous producers: profit-oriented professional farmers and utility-oriented hobby farmers. We start from an ecological-economic model conceptually similar to the one developed by Eiswerth and Johnson [Eiswerth, M.E. and Johnson, W.S., 2002. Managing nonindigenous invasive species: insights from dynamic analysis. Environmental and Resource Economics 23, 319-342.] and extend it in three ways. First, we make explicit the relationship between the invaded state carrying capacity and farmers' planting decisions. Second, we add another producer type into the framework and hence account for the existence of both professional and hobby fanners. Third, we provide a theoretical contribution by discussing two alternative types of equilibria. We also apply the model to an empirical case to extract a number of stylised facts and in particular to assess: a) under which circumstances the invasion is likely to be not controllable; and b) how extending control policies to hobby farmers could affect both types of producers. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The effects of nematodes on root morphology and the association of root characteristics with resistance to nematodes of seven banana varieties were investigated in two experiments. Banana plants were grown in controlled conditions within polytunnels and harvested on three occasions for the measurement of root morpholopy, and biomass. Varieties differed in their resistance to nematodes, from resistant (Yg Km5, FHIA 17, FHIA 03) and partly resistant (FHIA 01, FHIA 25) to not resistant ((FHIA 23, Williams). Nematodes reduced the root dry weight of FHIA 01, FHIA 17 and FHIA 23 at some harvests. Primary root number was on average 9.5% lower in nematode-infected plants than controls, with no differences among the varieties. Thus, there was no simple association between the resistance of these varieties and their tolerance to nematodes. Varieties differed in root morphology. Root dry weight was greatest for resistant varieties Yg Km5 and FHIA 03, and least for non-resistant varieties FHIA 23 and Williams. Thus, resistance to nematodes was associated with varieties with greater root mass and more and larger primary roots.
Resumo:
Dormancy is an adaptive trait in seed populations that helps ensure that seed germination is distributed over time and occurs in environmental conditions suitable for seedling growth. Several genes.. associated with seed dormancy in various plant species, have been integrated into a hypothetical dormancy model for Avena fatua L. (wild oats). Generally, the synthesis of, and sensitivity to, abscisic acid (ABA) during imbibition determines whether genes similar to those during maturation are expressed leading to a maintenance of dormancy during extended imbibition. Alternatively, there may be a shift towards expression of genes associated with gibberellins leading to germination. Environmental factors during maturation, after-ripening and imbibition are likely to interact with the genotype to affect gene expression and hence whether or not a seed germinates. In spite of the difficulties of working on a hexaploid species, A. fatua was selected for study because of its worldwide importance as a weed. Dormant and non-dormant genotypes of this species were also available. Gene expression studies are being carried out on three A.fatua genotypes produced tinder different environmental conditions to investigate the role of specific genes in dormancy and genotype X environment interactions in relation to dormancy.
Resumo:
Three experiments conducted over two years (2002-04) at the Crops Research Unit, University of Reading, investigated competition between autumn sown oilseed rape cultivars (Brassica napus L. ssp. oleifera var. biennis (DC.) Metzg.) and Lolium multiflorum Lam., L. x boucheanum Kunth and Alopecurus myosuroides Huds., sown as indicative grass weeds. Rape cultivar (cv.) had a substantial effect on grass weed seed return. Over the six cultivars tested, L. multiflorum spikelet production ranged from just under 400 spikelets/m(2) in the presence of cv. Winner to nearly 5800 in competition with cv. Lutin. Cultivar competitiveness was associated with high biomass, large dense floral layers and early stem extension. There was some evidence of differential competitive tolerance between rape cultivars. The results suggested that rape cultivars could be screened for competitiveness by measuring floral layer interception of photosynthetic active radiation. L. x boucheanum cultivars varied in ability to compete with rape. In the absence of inter-specific competition, spikelet density was similar for Aberecho and Polly (circa 31000 spikelets/m(2)) but when grown with rape Polly outyielded Aberecho (i.e. 12 090 and 7990 spikelets/m(2) respectively).
Resumo:
Three experiments conducted over two years (2002-04) at the Crops Research Unit, University of Reading, investigated competition between autumn sown oilseed rape cultivars (Brassica napus L. ssp. oleifera var. biennis (DC.) Metzg.) and Lolium multiflorum Lam., L. x boucheanum Kunth and Alopecurus myosuroides Huds., sown as indicative grass weeds. Rape cultivar (cv.) had a substantial effect on grass weed seed return. Over the six cultivars tested, L. multiflorum spikelet production ranged from just under 400 spikelets/m(2) in the presence of cv. Winner to nearly 5800 in competition with cv. Lutin. Cultivar competitiveness was associated with high biomass, large dense floral layers and early stem extension. There was some evidence of differential competitive tolerance between rape cultivars. The results suggested that rape cultivars could be screened for competitiveness by measuring floral layer interception of photosynthetic active radiation. L. x boucheanum cultivars varied in ability to compete with rape. In the absence of inter-specific competition, spikelet density was similar for Aberecho and Polly (circa 31000 spikelets/m(2)) but when grown with rape Polly outyielded Aberecho (i.e. 12 090 and 7990 spikelets/m(2) respectively).
Resumo:
Pulsed Phase Thermography (PPT) has been proven effective on depth retrieval of flat-bottomed holes in different materials such as plastics and aluminum. In PPT, amplitude and phase delay signatures are available following data acquisition (carried out in a similar way as in classical Pulsed Thermography), by applying a transformation algorithm such as the Fourier Transform (FT) on thermal profiles. The authors have recently presented an extended review on PPT theory, including a new inversion technique for depth retrieval by correlating the depth with the blind frequency fb (frequency at which a defect produce enough phase contrast to be detected). An automatic defect depth retrieval algorithm had also been proposed, evidencing PPT capabilities as a practical inversion technique. In addition, the use of normalized parameters to account for defect size variation as well as depth retrieval from complex shape composites (GFRP and CFRP) are currently under investigation. In this paper, steel plates containing flat-bottomed holes at different depths (from 1 to 4.5 mm) are tested by quantitative PPT. Least squares regression results show excellent agreement between depth and the inverse square root blind frequency, which can be used for depth inversion. Experimental results on steel plates with simulated corrosion are presented as well. It is worth noting that results are improved by performing PPT on reconstructed (synthetic) rather than on raw thermal data.
Resumo:
The prebiotic potential of oat samples was investigated by in vitro shaker-flask anaerobic fermentations with human fecal cultures. The oat bran fraction was obtained by debranning and was compared with other carbon sources such as whole oat flour, glucose, and fructo-oligosaccharide. The oat bran fraction showed a decrease in culturable anaerobes and clostridia and an increase in bifidobacteria and lactobacilli populations. A similar pattern was observed in fructo-oligosaccharide. Butyrate production was higher in oat bran compared to glucose and similar to that in fructo-oligosaccharide. Production of propionate was higher in the two oat media than in fructo-oligosaccharide and glucose, which can be used as energy source by the liver. This study suggests that the oat bran fraction obtained by debranning is digested by the gut ecosystem and increases the population of beneficial bacteria in the indigenous gut microbiota. This medium also provides an energy source preferred by colonocytes when it is metabolized by the gut flora.
Resumo:
Thua nao, a rich source of free-amino acids, is a fermented soybean, usually used as seasoning or flavouring enhancer in northern Thailand. Free-amino acids (FAA) of unfermented/cooked soybeans, thua nao, fermented by pure Bacillus subtilis TN51 (TNB51), and a naturally fermented product (TNMX), were investigated by pre-column derivatisation with 9-fluorenylmethyl chloroformate, followed by reversed-phase HPLC. Total FAA and essential amino acids were found at significantly higher concentrations in TNB51 thua nao than in TNMX thua nao (naturally fermented). Both fermented thua nao had much higher concentrations of FAA than had their unfermented counterparts. With respect to taste-enhancing FAA, typical bitter attributes of thua nao came mainly from hydrophobic and basic FAA, whereas an umami attribute came predominantly from acidic FAA.