969 resultados para 3-Methyl-2-benzothiazoline hydrazone
Resumo:
Methylglyoxal is an a-oxoaldehyde putatively produced in excess from triose phosphates, aminoacetone, and acetone in some disorders, particularly in diabetes. Here, we investigate the nucleophilic addition of ONOO(-), known as a potent oxidant and nucleophile, to methylglyoxal, yielding an acetyl radical intermediate and ultimately formate and acetate ions. The rate of ONOO(-) decay in the presence of methylglyoxal [k(2,app) = (1.0 +/- 0.1) x 10(3) M(-1) s(-1); k(2) approximate to 1.0 x 10(5) M(-1) s(-1)] at pH 7.2 and 25 degrees C was found to be faster than that reported with monocarbonyl substrates (k(2) < 10(3) M(-1) diacetyl (k(2) = 1.0 x 10(4) M(-1) s(-1)), or CO(2) (k(2) = 3-6 x 10(4) M(-1) s(-1)). The pH profile of the methylglyoxal peroxynitrite reaction describes an ascendant curve with an inflection around pH 7.2, which roughly coincides with the pK(a) values of both ONOOH and H(2)PO(4)(-) ion. Electron paramagnetic resonance spin trapping experiments with 2-methyl-2-nitrosopropane revealed concentration-dependent formation of an adduct that can be attributed to 2-methyl-2-nitrosopropane-CH(3)CO(center dot) (a(N) = 0.83 mT). Spin trapping with 3,5-dibromo-4-nitrosobenzene sulfonate gave a signal that could be assigned to a methyl radical adduct [a(N) = 1.41 mT; a(H) = 1.35 mT; a(H(m)) = 0.08 mT]. The 2-methyl-2-nitrosopropane-CH(3)CO(center dot) adduct could also be observed by replacement of ONOO(-) with H(2)O(2), although at much lower yields. Acetyl radicals could be also trapped by added L-lysine as indicated by the presence of W-acetyl-L-lysine in the spent reaction mixture. This raises the hypothesis that ONOO(-)/H(2)O(2) in the presence of methylglyoxal is endowed with the potential to acetylate proteins in post-translational processes.
Resumo:
A sensitive and robust analytical method for spectrophotometric determination of ethyl xanthate, CH(3)CH(2)OCS(2)(-) at trace concentrations in pulp solutions from froth flotation process is proposed. The analytical method is based on the decomposition of ethyl xanthate. EtX(-), with 2.0 mol L(-1) HCl generating ethanol and carbon disulfide. CS(2). A gas diffusion cell assures that only the volatile compounds diffuse through a PTFE membrane towards an acceptor stream of deionized water, thus avoiding the interferences of non-volatile compounds and suspended particles. The CS(2) is selectively detected by UV absorbance at 206 nm (epsilon = 65,000 L mol(-1) cm(-1)). The measured absorbance is directly proportional to EtX(-) concentration present in the sample solutions. The Beer`s law is obeyed in a 1 x 10(-6) to 2 x 10(-4) mol L(-1) concentration range of ethyl xanthate in the pulp with an excellent correlation coefficient (r = 0.999) and a detection limit of 3.1 x 10(-7) mol L(-1), corresponding to 38 mu g L. At flow rates of 200 mu L min(-1) of the donor stream and 100 mu L min(-1) of the acceptor channel a sampling rate of 15 injections per hour could be achieved with RSD < 2.3% (n = 10, 300 mu L injections of 1 x 10(-5) mol L(-1) EtX(-)). Two practical applications demonstrate the versatility of the FIA method: (i) evaluation the free EtX(-) concentration during a laboratory study of the EtX(-) adsorption capacity on pulverized sulfide ore (pyrite) and (ii) monitoring of EtX(-) at different stages (from starting load to washing effluents) of a flotation pilot plant processing a Cu-Zn sulfide ore. (C) 2010 Elsevier By. All rights reserved.
Resumo:
The bioactivity-guided fractionation of the crude extracts from leaves of Brazilian species Piper aduncum and Piper hostmannianum by means of bioautography using the fungi Cladosporium cladosporioides and C. sphaerospermum afforded prenylated methyl benzoate, chromenes, and dihydrobenzopyran derivatives as antifungal compounds. The isolation and structural elucidation of a new compound methyl 4-hydroxy-3-(2`-hydroperoxy-3`-methyl-3`-butenyl) benzoate were performed by application of chromatographic techniques and spectroscopic analyses. (C) 2009 Phytochemical Society of Europe. Published by Elsevier B.V. All rights reserved.
Resumo:
We previously demonstrated that Bis[(2-oxindol-3-ylimino)-2-(2-aminoethyl) pyridine-N, N`] copper(II) [Cu(isaepy)(2)] was an efficient inducer of the apoptotic mitochondrial pathway. Here, we deeply dissect the mechanisms underlying the ability of Cu(isaepy)(2) to cause mitochondriotoxicity. In particular, we demonstrate that Cu(isaepy)(2) increases NADH-dependent oxygen consumption of isolated mitochondria and that this phenomenon is associated with oxy-radical production and insensitive to adenosine diphosphate. These data indicate that Cu(isaepy)(2) behaves as an uncoupler and this property is also confirmed in cell systems. Particularly, SH-SY5Y cells show: (i) an early loss of mitochondrial transmembrane potential; (ii) a decrease in the expression levels of respiratory complex components and (iii) a significant adenosine triphosphate (ATP) decrement. The causative energetic impairment mediated by Cu(isaepy)(2) in apoptosis is confirmed by experiments carried out with rho(0) cells, or by glucose supplementation, where cell death is significantly inhibited. Moreover, gastric and cervix carcinoma AGS and HeLa cells, which rely most of their ATP production on oxidative phosphorylation, show a marked sensitivity toward Cu(isaepy)(2). Adenosine monophosphate-activated protein kinase (AMPK), which is activated by events increasing the adenosine monophosphate: ATP ratio, is deeply involved in the apoptotic process because the overexpression of its dominant/negative form completely abolishes cell death. Upon glucose supplementation, AMPK is not activated, confirming its role as fuel-sensing enzyme that positively responds to Cu(isaepy)(2)-mediated energetic impairment by committing cells to apoptosis. Overall, data obtained indicate that Cu(isaepy)(2) behaves as delocalized lipophilic cation and induces mitochondrial-sited reactive oxygen species production. This event results in mitochondrial dysfunction and ATP decrease, which in turn triggers AMPK-dependent apoptosis.
Resumo:
The trypanocidal activity of crude extracts and fractions from the leaves and stems of Peperomia obtusifolia (Piperaceae) was evaluated in vitro against the epimastigote forms of Trypanosoma cruzi. Bioactivity-guided fractionation of the most active extracts afforded seven known compounds, including three chromanes, two furofuran lignans and two flavone C-diglycosides. The most active compounds were the chromanes peperobtusin A and 3,4-dihydro-5-hydroxy-2,7-dimethyl-8-(2 ``-methyl-2 ``-butenyl)-2-(4`-methyl-1`,3`-pentadienyl)-2H-1-benzopyran-6-carboxylic acid, with IC(50) values of 3.1 mu M (almost three times more active than the positive control benznidazole, IC(50) 10.4 mu M) and 27.0 mu M, respectively. Cytotoxicity assays using peritoneal murine macrophages indicated that the chromanes were not toxic at the level of the IC(50) for trypanocidal activity. This is the first report on the trypanocidal activity besides unspecific cytotoxicity of chromanes from Peperomia species. Additionally it represents the first time isolation of 3,4-dihydro5-hydroxy-2,7-dimethyl-8-(2 ``-methyl-2 ``-butenyl)-2-(4`-methyl-1`,3`-pentadienyl)-2H-1-benzopyran-6-carboxylic acid from P. obtusifolia.
Resumo:
The aim of the study was to investigate the anti-trypanocidal activities of natural chromene and chromene derivatives. Five chromenes were isolated from Piper gaudichaudianum and P. aduncum, and a further seven derivatives were prepared using standard reduction, methylation and acetylation procedures. These compounds were assayed in vitro against epimastigote forms of Trypanosoma cruzi, the causative agent of Chagas disease. The results showed that the most of the compounds, especially those possessing electron-donating groups as substituents on the aromatic ring, showed potent trypanocidal activity. The most active compound, [(2S)-methyl-2-methyl-8-(3 ``-methylbut-2 ``-enyl)-2-(4`-methylpent-3`-enyl)-2H-chromene-6-carboxylate], was almost four times more potent than benznidazole (the positive control) and showed an IC50 of 2.82 mu M. The results reveal that chromenes exhibit significant anti-trypanocidal activities and indicate that this class of natural product should be considered further in the development of new and more potent drugs for use in the treatment of Chagas disease.
Resumo:
A simple, fast, accurate, and sensitive spectrophotometric method was developed to determine zinc(II). This method is based on the reaction of Zn(II) with di-2-pyridyl ketone benzoylhydrazone (DPKBH), at pH=5.5 and 50% (v/v) ethanol. Beers law was obeyed in the range 0.020-1.82 mu g mL(-1) with a molar apsorptivity of 3.64 x 10(4) L mol(-1) cm(-1), and a detection limit (3) of 2.29 mu g L-1. The action of some interfering ions was verified and the developed method applied to pharmaceutical and biological samples. The results were then compared with those obtained by using a flame atomic absorption technique.
Resumo:
Structural and thermodynamic stabilities of monomers and dimers of trialkylphosphine oxides (TRPO) were Studied using quantum chemistry calculations. Density functional theory calculations were carried Out and the structures Of four TRPO have been determined: TMPO (methyl; R = CH(3)), TEPO (ethyl; R = CH(3)CH(2)), TBPO (n-butyl; R = CH(3)(CH(2))(3)), and TOPO (n-octyl; R = CH(3)(CH(2))(7)). TRPO homodimers were investigated considering two isomeric possibilities for each dimer. Relative binding energies and the enthalpic and entropic contributions to the Gibbs free energy were Calculated for all dimers. The formation of dimers from the individual monomeric TRPO species as a function of temperature was also analyzed. (C) 2008 Wiley Periodicals, Inc. Int J Quantum Chem 109: 250-258, 2009
Resumo:
The conformational features of three 2-sulphur-substituted cyclohexanone derivatives, which differ in the number of sulphur-bound oxygen atoms, i.e. zero (I), one (II) and two (III), were investigated by single crystal X-ray crystallography and geometry optimized structures determined using Hartree-Fock method. In each of (I)-(III) an intramolecular S center dot center dot center dot O(carbonyl) interaction is found with the magnitude correlated with the oxidation state of the sulphur atom, i.e. 2.838(3) angstrom in (I) to 2.924(2) angstrom in (II) to 3.0973(18) angstrom in (III). There is an inverse relationship between the strength of this interaction and the magnitude of the carbonyl bond. The supramolecular aggregation patterns are primarily determined by C-H center dot center dot center dot O contacts and are similarly influenced by the number of oxygen atoms in the molecular structures. Thus, a supramolecular chain is found in the crystal structure of (I). With an additional oxygen atom available to participate in C-H center dot center dot center dot O interactions, as in (II), a two-dimensional array is found. Finally, a three-dimensional network is found for (III). Despite there being differences in conformations between the experimental structures and those calculated in the gas-phase, the S center dot center dot center dot O interactions persist. The presence of intermolecular C-H center dot center dot center dot O interactions involving the cyclohexanone-carbonyl group in the solid-state, disrupts the stabilising intramolecular C-H center dot center dot center dot O interaction in the energetically-favoured conformation. (I): C(12)H(13)NO(3)S, triclinic space group P (1) over bar with a = 5.392(3) angstrom b = 10.731(6) angstrom, c = 11.075(6) angstrom, alpha = 113.424(4)degrees, beta = 94.167(9)degrees, gamma = 98.444(6)degrees, V = 575.5(6) angstrom(3), Z = 2, R(1) = 0.052; (II): C(12)H(13)NO(4)S, monoclinic P2(1)/n, a = 7.3506(15) angstrom, b = 6.7814(14) angstrom, c = 23.479(5) angstrom, beta = 92.94(3)degrees, V = 1168.8(4) angstrom(3), Z = 4, R(1) = 0.046; (III): C(12)H(13)NO(5)S, monoclinic P2(1)/c, a = 5.5491(11) angstrom, b = 24.146(3) angstrom, c = 11.124(3) angstrom, beta = 114.590(10)degrees, V = 1355.3(5) angstrom(3), Z = 4, R(1) = 0.051.