999 resultados para 290801 Structural Engineering


Relevância:

80.00% 80.00%

Publicador:

Resumo:

matlab functions for the validation of push-off tests results

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Constant developments in the field of offshore wind energy have increased the range of water depths at which wind farms are planned to be installed. Therefore, in addition to monopile support structures suitable in shallow waters (up to 30 m), different types of support structures, able to withstand severe sea conditions at the greater water depths, have been developed. For water depths above 30 m, the jacket is one of the preferred support types. Jacket represents a lightweight support structure, which, in combination with complex nature of environmental loads, is prone to highly dynamic behavior. As a consequence, high stresses with great variability in time can be observed in all structural members. The highest concentration of stresses occurs in joints due to their nature (structural discontinuities) and due to the existence of notches along the welds present in the joints. This makes them the weakest elements of the jacket in terms of fatigue. In the numerical modeling of jackets for offshore wind turbines, a reduction of local stresses at the chord-brace joints, and consequently an optimization of the model, can be achieved by implementing joint flexibility in the chord-brace joints. Therefore, in this work, the influence of joint flexibility on the fatigue damage in chord-brace joints of a numerical jacket model, subjected to advanced load simulations, is studied.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study investigates the feasibility of predicting the momentamplification in beam-column elements of steel moment-resisting frames using the structure's natural period. Unlike previous methods, which perform moment-amplification on a story-by-story basis, this study develops and tests two models that aim to predict a global amplification factor indicative of the largest relevant instance of local moment amplification in the structure. To thisend, a variety of two-dimensional frames is investigated using first and secondorder finite element analysis. The observed moment amplification is then compared with the predicted amplification based on the structure's natural period, which is calculated by first-order finite element analysis. As a benchmark, design moment amplification factors are calculated for each story using the story stiffness approach, and serve to demonstrate the relativeconservatism and accuracy of the proposed models with respect to current practice in design. The study finds that the observed moment amplification factors may vastly exceed expectations when internal member stresses are initially very small. Where the internal stresses are small relative to the member capacities, thesecases are inconsequential for design. To qualify the significance of the observed amplification factors, two parameters are used: the second-order moment normalized to the plastic moment capacity, and the combined flexural and axial stress interaction equations developed by AISC

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The long-term performance of infrastructure depends on reliable and sustainable designs. Many of Pennsylvania’s streams experience sediment transport problems that increase maintenance costs and lower structural integrity of bridge crossings. A stream restoration project is one common mitigation measure used to correct such problems at bridge crossings. Specifically, in an attempt to alleviate aggradation problems with the Old Route 15 Bridge crossing on White Deer Creek, in White Deer, PA, two in-stream structures (rock cross vanes) and several bank stabilization features were installed along with a complete channel redevelopment. The objectives of this research were to characterize the hydraulic and sediment transport processes occurring at the White Deer Creek site, and to investigate, through physical and mathematical modeling, the use of instream restoration structures. The goal is to be able to use the results of this study to prevent aggradation or other sediment related problems in the vicinity of bridges through improved design considerations. Monitoring and modeling indicate that the study site on White Deer Creek is currently unstable, experiencing general channel down-cutting, bank erosion, and several local areas of increased aggradation and degradation of the channel bed. An in-stream structure installed upstream of the Old Route 15 Bridge failed by sediment burial caused by the high sediment load that White Deer Creek is transporting as well as the backwater effects caused by the bridge crossing. The in-stream structure installed downstream of the Old Route 15 Bridge is beginning to fail because of the alignment of the structure with the approach direction of flow from upstream of the restoration structure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The study of advanced materials aimed at improving human life has been performed since time immemorial. Such studies have created everlasting and greatly revered monuments and have helped revolutionize transportation by ushering the age of lighter–than–air flying machines. Hence a study of the mechanical behavior of advanced materials can pave way for their use for mankind’s benefit. In this school of thought, the aim of this dissertation is to broadly perform two investigations. First, an efficient modeling approach is established to predict the elastic response of cellular materials with distributions of cell geometries. Cellular materials find important applications in structural engineering. The approach does not require complex and time-consuming computational techniques usually associated with modeling such materials. Unlike most current analytical techniques, the modeling approach directly accounts for the cellular material microstructure. The approach combines micropolar elasticity theory and elastic mixture theory to predict the elastic response of cellular materials. The modeling approach is applied to the two dimensional balsa wood material. Predicted properties are in good agreement with experimentally determined properties, which emphasizes the model’s potential to predict the elastic response of other cellular solids, such as open cell and closed cell foams. The second topic concerns intraneural ganglion cysts which are a set of medical conditions that result in denervation of the muscles innervated by the cystic nerve leading to pain and loss of function. Current treatment approaches only temporarily alleviate pain and denervation which, however, does not prevent cyst recurrence. Hence, a mechanistic understanding of the pathogenesis of intraneural ganglion cysts can help clinicians understand them better and therefore devise more effective treatment options. In this study, an analysis methodology using finite element analysis is established to investigate the pathogenesis of intraneural ganglion cysts. Using this methodology, the propagation of these cysts is analyzed in their most common site of occurrence in the human body i.e. the common peroneal nerve. Results obtained using finite element analysis show good correlation with clinical imaging patterns thereby validating the promise of the method to study cyst pathogenesis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The need for a stronger and more durable building material is becoming more important as the structural engineering field expands and challenges the behavioral limits of current materials. One of the demands for stronger material is rooted in the effects that dynamic loading has on a structure. High strain rates on the order of 101 s-1 to 103 s-1, though a small part of the overall types of loading that occur anywhere between 10-8 s-1 to 104 s-1 and at any point in a structures life, have very important effects when considering dynamic loading on a structure. High strain rates such as these can cause the material and structure to behave differently than at slower strain rates, which necessitates the need for the testing of materials under such loading to understand its behavior. Ultra high performance concrete (UHPC), a relatively new material in the U.S. construction industry, exhibits many enhanced strength and durability properties compared to the standard normal strength concrete. However, the use of this material for high strain rate applications requires an understanding of UHPC’s dynamic properties under corresponding loads. One such dynamic property is the increase in compressive strength under high strain rate load conditions, quantified as the dynamic increase factor (DIF). This factor allows a designer to relate the dynamic compressive strength back to the static compressive strength, which generally is a well-established property. Previous research establishes the relationships for the concept of DIF in design. The generally accepted methodology for obtaining high strain rates to study the enhanced behavior of compressive material strength is the split Hopkinson pressure bar (SHPB). In this research, 83 Cor-Tuf UHPC specimens were tested in dynamic compression using a SHPB at Michigan Technological University. The specimens were separated into two categories: ambient cured and thermally treated, with aspect ratios of 0.5:1, 1:1, and 2:1 within each category. There was statistically no significant difference in mean DIF for the aspect ratios and cure regimes that were considered in this study. DIF’s ranged from 1.85 to 2.09. Failure modes were observed to be mostly Type 2, Type 4, or combinations thereof for all specimen aspect ratios when classified according to ASTM C39 fracture pattern guidelines. The Comite Euro-International du Beton (CEB) model for DIF versus strain rate does not accurately predict the DIF for UHPC data gathered in this study. Additionally, a measurement system analysis was conducted to observe variance within the measurement system and a general linear model analysis was performed to examine the interaction and main effects that aspect ratio, cannon pressure, and cure method have on the maximum dynamic stress.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The structural continuity of fully integral bridges entails many advantages and some drawbacks. Among the latter, the cyclic expansions and contractions of the deck caused by seasonal thermal variations impose alternating displacements at the piers and abutments, with effects that may be difficult to establish reliably. The advantages include easier construction and cheaper maintenance but, especially, horizontal loads can be transmitted to the ground in a much better way than in conventional bridges. This paper first presents a methodology for dealing with the problems that the cyclic displacements imposed raise at the abutments and at the bridge piers. At the former, large pressures may develop, possibly accompanied by undesirable surface settlements. At the latter, the degree of cracking and the ability to carry the specified loads may be in question. Having quantified the drawbacks, simplified but realistic analyses are conducted of the response of an integral bridge to braking and seismic loads. It is shown that integral bridges constitute an excellent alternative in the context of the requirements posed by new high-speed railway lines.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study the dynamic response of a wind turbine structure subjected to theoretical seismic motions, taking into account the rotational component of ground shaking. Models are generated for a shallow moderate crustal earthquake in the Madrid Region (Spain). Synthetic translational and rotational time histories are computed using the Discrete Wavenumber Method, assuming a point source and a horizontal layered earth structure. These are used to analyze the dynamic response of a wind turbine, represented by a simple finite element model. Von Mises stress values at different heights of the tower are used to study the dynamical structural response to a set of synthetic ground motion time histories

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the present work a seismic retrofitting technique is proposed for masonry infilled reinforced concrete frames based on the replacement of infill panels by K-bracing with vertical shear link. The performance of this technique is evaluated through experimental tests. A simplified numerical model for structural damage evaluation is also formulated according to the notions and principles of continuum damage mechanics. The proposed model is calibrated with the experimental results. The experimental results have shown an excellent energy dissipation capacity with the proposed technique. Likewise, the numerical predictions with the proposed model are in good agreement with experimental results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To model strength degradation due to low cycle fatigue, at least three different approaches can be considered. One possibility is based on the formulation of a new free energy function and damage energy release rate, as was proposed by Ju(1989). The second approach uses the notion of bounding surface introduced in cyclic plasticity by Dafalias and Popov (1975). From this concept, some models have been proposed to quantify damage in concrete or RC (Suaris et al. 1990). The model proposed by the author to include fatigue effects is based essentially in Marigo (1985) and can be included in this approach.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Current trends in the fields of artifical intelligence and expert systems are moving towards the exciting possibility of reproducing and simulating human expertise and expert behaviour into a knowledge base, coupled with an appropriate, partially ‘intelligent’, computer code. This paper deals with the quality level prediction in concrete structures using the helpful assistance of an expert system, QL-CONST1, which is able to reason about this specific field of structural engineering. Evidence, hypotheses and factors related to this human knowledge field have been codified into a knowledge base. This knowledge base has been prepared in terms of probabilities of the presence of either hypotheses or evidence and the conditional presence of both. Human experts in the fields of structural engineering and the safety of structures gave their invaluable knowledge and assistance to the construction of the knowledge base. Some illustrative examples for, the validation of the expert system behaviour are included.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper deals with the assessment of the contribution of the second flexural mode to the dynamic behaviour of simply supported railway bridges. Alluding to the works of other authors, it is suggested in some references that the dynamic behaviour of simply supported bridges could be adequately represented taking into account only the contribution of the fundamental flexural mode. On the other hand, the European Rail Research Institute (ERRI) proposes that the second mode should also be included whenever the associated natural frequency is lower than 30 Hz]. This investigation endeavours to clarify the question as much as possible by establishing whether the maximum response of the bridge, in terms of displacements, accelerations and bending moments, can be computed accurately not taking account of the contribution of the second mode. To this end, a dimensionless formulation of the equations of motion of a simply supported beam traversed by a series of equally spaced moving loads is presented. This formulation brings to light the fundamental parameters governing the behaviour of the beam: damping ratio, dimensionless speed $ \alpha$=VT/L, and L/d ratio (L stands for the span of the beam, V for the speed of the train, T represents the fundamental period of the bridge and d symbolises the distance between consecutive loads). Assuming a damping ratio equal to 1%, which is a usual value for prestressed high-speed bridges, a parametric analysis is conducted over realistic ranges of values of $ \alpha$ and L/d. The results can be extended to any simply supported bridge subjected to a train of equally spaced loads in virtue of the so-called Similarity Formulae. The validity of these formulae can be derived from the dimensionless formulation mentioned above. In the parametric analysis the maximum response of the bridge is obtained for one thousand values of speed that cover the range from the fourth resonance of the first mode to the first resonance of the second mode. The response at twenty-one different locations along the span of the beam is compared in order to decide if the maximum can be accurately computed with the sole contribution of the fundamental mode.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Numerous damage models have been developed in order to analyse the seismic behavior. Among the different possibilities existing in the literature, it is very clear that models developed along the lines of Continuum Damage Mechanics are more consistent with the definition of damage like a phenomenon with mechanical consequences as they include explicitly the coupling between damage and mechanical behavior. On the other hand, for seismic processes, phenomena such as low cycle fatigue may have a pronounced effect on the overall behavior of the frames and, therefore, its consideration turns out to be very important. However, many of existing models evaluate the damage only as a function of the maximum amplitude of cyclic deformation without considering the number of cycles. In this paper, a generalization of the simplified model proposed by Flórez is made in order to include the low cycle fatigue. Such model employs in its formulation irreversible thermodynamics and internal state variable theory.