980 resultados para 240401 Optics and Opto-electronic Physics


Relevância:

100.00% 100.00%

Publicador:

Resumo:

General note: Title and date provided by Bettye Lane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

General note: Title and date provided by Bettye Lane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

General note: Title and date provided by Bettye Lane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

General note: Title and date provided by Bettye Lane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

General note: Title and date provided by Bettye Lane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

General note: Title and date provided by Bettye Lane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

General note: Title and date provided by Bettye Lane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

General note: Title and date provided by Bettye Lane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

General note: Title and date provided by Bettye Lane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

General note: Title and date provided by Bettye Lane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

General note: Title and date provided by Bettye Lane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the essential features of the dissipative parametric instability, in the universal complex Ginzburg- Landau equation. Dissipative parametric instability is excited through a parametric modulation of frequency dependent losses in a zig-zag fashion in the spectral domain. Such damping is introduced respectively for spectral components in the +ΔF and in the -ΔF region in alternating fashion, where F can represent wavenumber or temporal frequency depending on the applications. Such a spectral modulation can destabilize the homogeneous stationary solution of the system leading to growth of spectral sidebands and to the consequent pattern formation: both stable and unstable patterns in one- and in two-dimensional systems can be excited. The dissipative parametric instability provides an useful and interesting tool for the control of pattern formation in nonlinear optical systems with potentially interesting applications in technological applications, like the design of mode- locked lasers emitting pulse trains with tunable repetition rate; but it could also find realizations in nanophotonics circuits or in dissipative polaritonic Bose-Einstein condensates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In traditional electrical sensing applications, multiplexing and interconnecting the different sensing elements is a major challenge. Recently, many optical alternatives have been investigated including optical fiber sensors of which the sensing elements consist of fiber Bragg gratings. Different sensing points can be integrated in one optical fiber solving the interconnection problem and avoiding any electromagnetical interference (EMI). Many new sensing applications also require flexible or stretchable sensing foils which can be attached to or wrapped around irregularly shaped objects such as robot fingers and car bumpers or which can even be applied in biomedical applications where a sensor is fixed on a human body. The use of these optical sensors however always implies the use of a light-source, detectors and electronic circuitry to be coupled and integrated with these sensors. The coupling of these fibers with these light sources and detectors is a critical packaging problem and as it is well-known the costs for packaging, especially with optoelectronic components and fiber alignment issues are huge. The end goal of this embedded sensor is to create a flexible optical sensor integrated with (opto)electronic modules and control circuitry. To obtain this flexibility, one can embed the optical sensors and the driving optoelectronics in a stretchable polymer host material. In this article different embedding techniques for optical fiber sensors are described and characterized. Initial tests based on standard manufacturing processes such as molding and laser structuring are reported as well as a more advanced embedding technique based on soft lithography processing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of present paper is to present the latest results on investigations of the carbon thin film deposited by Thermionic Vacuum Arc (TVA) method and laser pyrolysis. X-ray photoelectron spectroscopy (XPS) and X-ray generated Auger electron spectroscopy (XAES) were used to determine composition and sp2 to sp3 ratios in the outer layers of the film surfaces. The analyses were conducted in a Thermoelectron ESCALAB 250 electron spectrometer equipped with a hemispherical sector energy analyser. Monochromated Al K X-radiation was employed for the XPS examination, at source excitation energy of 15 KeV and emission current of 20 mA. Analyzer pass energy of 20 eV with step size of 0.1 eV and dwell time of 100 ms was used throughout. © 2010 SPIE.