976 resultados para 240302 Nuclear and Particle Physics
Resumo:
The bipolar point spread function (PSF) corresponding to the Wiener filter tor correcting linear-motion-blurred pictures is implemented in a noncoherent optical processor. The following two approaches are taken for this implementation: (1) the PSF is modulated and biased so that the resulting function is non-negative and (2) the PSF is split into its positive and sign-reversed negative parts, and these two parts are dealt with separately. The phase problem associated with arriving at the pupil function from these modified PSFs is solved using both analytical and combined analytical-iterative techniques available in the literature. The designed pupil functions are experimentally implemented, and deblurring in a noncoherent processor is demonstrated. The postprocessing required (i.e., demodulation in the first approach to modulating the PSF and intensity subtraction in the second approach) are carried out either in a coherent processor or with the help of a PC-based vision system. The deblurred outputs are presented.
Resumo:
We investigate the structural, magnetic, and specific heat behavior of the hexagonal manganite Dy0.5Y0.5MnO3 in order to understand the effect of dilution of Dy magnetism with nonmagnetic yttrium. In this compound, the triangular Mn lattice orders antiferromagnetic at T-N(Mn) approximate to 68 K observed experimentally in the derivative of magnetic susceptibility as well as in specific heat. In addition, a low-temperature peak at T-N(Dy) similar to 3 K is observed in specific heat which is attributed to rare earth order. The T-N(Mn) increases by 9 K compared to that of hexagonal (h) DyMnO3 while T-N(Dy) is unchanged. A change in slope of thermal evolution of lattice parameters is observed to occur at temperature close to T-N(Mn). This hints at strong magnetoelastic coupling in this geometric multiferroic. In magnetization measurements, steplike features are observed when the magnetic field is applied along the c axis which shift to higher fields with temperature and vanish completely above 40 K. The presence of different magnetic phases at low temperature and strong magnetoelastic effects can lead to such field-induced transitions which resemble metamagnetic transitions. This indicates the possibility of strong field-induced effects in dielectric properties of this material, which is unexplored to date.
Resumo:
CZTS (Copper Zinc Tin Sulphide) is a wide band gap quartnery chalcopyrite which has a band gap of about 1.45 eV and an absorption coefficient of 10(4) cm(-1); thus making it an ideal material to be used as an absorber layer in solar cells. Ultrasonic Spray Pyrolysis is a deposition technique, where the solution is atomized ultrasonically, thereby giving a fine mist having a narrow size distribution which can be used for uniform coatings on substrates. An Ultrasonic Spray Pyrolysis equipment was developed and CZTS absorber layers were successfully grown with this technique on soda lime glass substrates using aqueous solutions. Substrate temperatures ranging from 523 K to 723 K were used to deposit the CZTS layers and these films were characterized using SEM, EDAX and XRD. It was observed that the film crystallized in the kesterite structure and the best crystallites were obtained at 613 K. It was observed that the grain size progressively increased with temperature. The optical band gap of the material was obtained as 1.54 eV.
Resumo:
Thin films of zirconia have been synthesized using reactive DC magnetron sputtering. It has been found that films with good optical constants, high refractive index (1.9 at 600 nm) and low extinction coefficient can be prepared al ambient temperatures. The optical constants and band gnp and hence the composition nle dependent on the deposition parameters such as target power, rate of deposition and oxygen background pressure. Thermal annealing of the films revealed that tile films showed optical and crystalline inhomogeneity and also large variations in optical constants.
Resumo:
Lithium phosphorus oxynitride (LiPON), the widely used solid electrolyte for thin film microbatteries, is not compatible with the ambient humid temperatures. The reasons for reduction in ionic conductivity of LiPON thin films from 2.8 x 10(-6) Scm(-1) to 9.9 x 10(-10) Scm(-1) when exposed to air are analyzed with the aid of AC impedance measurements, SEM, XPS and stylus profilometry. Initially, particulate-free film surfaces obtained soon after rf sputter deposition in N-2 ambient conditions becomes covered with microstructures, forming pores in the film when exposed to air. LiPON films are deposited on Ti coated silicon in addition to bare silicon, ruling out the possibility of stress-related rupturing from the LiPON/Si interface. The reduction of nitrogen, phosphorus, and increased presence of lithium, oxygen and carbon over the film surface lowers the ionic conductivity of LiPON films when exposed to air. (c) 2011 Elsevier B.V. All rights reserved.
Resumo:
Hamiltonian constructed in a first principles manner, we explored the origin of magnetism and the T-c trend in Cr-based double perovskite series, Sr2CrB'O-6 (B' = W/Re/Os). Our study shows that the apparently puzzling T-c trend in Sr2CrB'O-6 (B' = W/Re/Os) series can be understood in terms of the interplay of the hybridization driven mechanism and the superexchange mechanism.
Resumo:
The as-deposited and annealed radio frequency reactive magnetron sputtered tantalum oxide (Ta2O5) films were characterized by studying the chemical binding configuration, structural and electrical properties. X-ray photoelectron spectroscopy and X-ray diffraction analysis of the films elucidate that the film annealed at 673 K was stoichiometric with orthorhombic beta-phase Ta2O5. The dielectric constant values of the tantalum oxide capacitors with the sandwich structure of Al/Ta2O5/Si were in the range from 14 to 26 depending on the post-deposition annealing temperature. The leakage current density was < 20 nA cm(-2) at the gate bias voltage of 0.04 MV/cm for the annealed films. The electrical conduction mechanism observed in the films was Poole-Frenkel. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
A wide pore distribution mesoporous morphology stabilizes SnO2 structure during lithium insertion and removal and in the process remarkably enhances the lithium storage and cyclability.
Resumo:
We report here an easily reversible set-reset process in a new Ge15Te83Si2 glass that could be a promising candidate for phase change random access memory applications. The I-V characteristics of the studied sample show a comparatively low threshold electric field (E-th) of 7.3 kV/cm. Distinct differences in the type of switching behavior are achieved by means of controlling the on state current. It enables the observation of a threshold type for less than 0.7 mA beyond memory type (set) switching. The set and reset processes have been achieved with a similar magnitude of 1 mA, and with a triangular current pulse for the set process and a short duration rectangular pulse of 10 msec width for the reset operation. Further, a self-resetting effect is seen in this material upon excitation with a saw-tooth/square pulse, and their response of leading and trailing edges are discussed. About 6.5 x 10(4) set-reset cycles have been undertaken without any damage to the device. (C) 2011 American Institute of Physics. doi: 10.1063/1.3574659]
Resumo:
The dependence of optical constants, structure and composition of titania thin films on the process parameters has been investigated. Films were deposited using both reactive electron beam evaporation and ion Assisted Deposition(IAD). If has been observed that the refractive index of IAD films is higher than that for the reactively deposited films, without much difference in the extinction coefficient. Electron paramagnetic resonance has been used to estimate qualitatively the presence of non-stoichiometry in the films. It has been found that these spectra correlate very well the optical behaviour of the films. X-ray diffraction studies revealed that the neutral oxygen deposited films were stress free, while the IAD films showed tensile stress. The lattice parameters showed anisotropic change with ion beam parameters.
Resumo:
A bioprocessing approach for the extraction of base, nuclear and precious metals from refractory and lean grade ores has been reviewed in this paper. Characteristic morphological features of Thiobacillus ferrooxidans, the organism which has been extensively used for biooxidation of sulphide ores have been discussed. Mechanisms of chemoautotrophy and mineral oxidation have been illustrated. The current engineering applications of this microorganism have also been brought out. Various methods for accelerating the growth of Thiobacillus ferrooxidans for faster biooxidation and genetic manipulation for development of desired strains have been outlined.
Resumo:
Temperature and magnetic field studies of the elastic constants of the chromium spinel CdCr2O4 show pronounced anomalies related to strong spin-phonon coupling in this frustrated antiferromagnet. A detailed comparison of the longitudinal acoustic mode propagating along the 111] direction with a theory based on an exchange-striction mechanism leads to an estimate of the strength of the magnetoelastic interaction. The derived spin-phonon coupling constant is in good agreement with previous determinations based on infrared absorption. Further insight is gained from intermediate and high magnetic field experiments in the field regime of the magnetization plateau. The role of the antisymmetric Dzyaloshinskii-Moriya interaction is discussed.
Resumo:
A simple technique is devised to measure the angles of 90-, 45-, 45-deg and 60-, 30-, 90-deg prisms without using expensive spectrometers, autocollimators, and angle gauges. The method can be extended to unpolished and opaque prisms made of materials other then glass. (C) 1997 Society of Photo-Optical instrumentation Engineers.