967 resultados para Électroencéphalographie (EEG)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES The objectives of the present study were to investigate temporal/spectral sound-feature processing in preschool children (4 to 7 years old) with peripheral hearing loss compared with age-matched controls. The results verified the presence of statistical learning, which was diminished in children with hearing impairments (HIs), and elucidated possible perceptual mediators of speech production. DESIGN Perception and production of the syllables /ba/, /da/, /ta/, and /na/ were recorded in 13 children with normal hearing and 13 children with HI. Perception was assessed physiologically through event-related potentials (ERPs) recorded by EEG in a multifeature mismatch negativity paradigm and behaviorally through a discrimination task. Temporal and spectral features of the ERPs during speech perception were analyzed, and speech production was quantitatively evaluated using speech motor maximum performance tasks. RESULTS Proximal to stimulus onset, children with HI displayed a difference in map topography, indicating diminished statistical learning. In later ERP components, children with HI exhibited reduced amplitudes in the N2 and early parts of the late disciminative negativity components specifically, which are associated with temporal and spectral control mechanisms. Abnormalities of speech perception were only subtly reflected in speech production, as the lone difference found in speech production studies was a mild delay in regulating speech intensity. CONCLUSIONS In addition to previously reported deficits of sound-feature discriminations, the present study results reflect diminished statistical learning in children with HI, which plays an early and important, but so far neglected, role in phonological processing. Furthermore, the lack of corresponding behavioral abnormalities in speech production implies that impaired perceptual capacities do not necessarily translate into productive deficits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spontaneous EEG signal can be parsed into sub-second periods of stable functional states (microstates) that assumingly correspond to brief large scale synchronization events. In schizophrenia, a specific class of microstate (class "D") has been found to be shorter than in healthy controls and to be correlated with positive symptoms. To explore potential new treatment options in schizophrenia, we tested in healthy controls if neurofeedback training to self-regulate microstate D presence is feasible and what learning patterns are observed. Twenty subjects underwent EEG-neurofeedback training to up-regulate microstate D presence. The protocol included 20 training sessions, consisting of baseline trials (resting state), regulation trials with auditory feedback contingent on microstate D presence, and a transfer trial. Response to neurofeedback was assessed with mixed effects modelling. All participants increased the percentage of time spent producing microstate D in at least one of the three conditions (p < 0.05). Significant between-subjects across-sessions results showed an increase of 0.42 % of time spent producing microstate D in baseline (reflecting a sustained change in the resting state), 1.93 % of increase during regulation and 1.83 % during transfer. Within-session analysis (performed in baseline and regulation trials only) showed a significant 1.65 % increase in baseline and 0.53 % increase in regulation. These values are in a range that is expected to have an impact upon psychotic experiences. Additionally, we found a negative correlation between alpha power and microstate D contribution during neurofeedback training. Given that microstate D has been related to attentional processes, this result provides further evidence that the training was to some degree specific for the attentional network. We conclude that microstate-neurofeedback training proved feasible in healthy subjects. The implementation of the same protocol in schizophrenia patients may promote skills useful to reduce positive symptoms by means of EEG-neurofeedback.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Optimal adjustment of brain networks allows the biased processing of information in response to the demand of environments and is therefore prerequisite for adaptive behaviour. It is widely shown that a biased state of networks is associated with a particular cognitive process. However, those associations were identified by backward categorization of trials and cannot provide a causal association with cognitive processes. This problem still remains a big obstacle to advance the state of our field in particular human cognitive neuroscience. In my talk, I will present two approaches to address the causal relationships between brain network interactions and behaviour. Firstly, we combined connectivity analysis of fMRI data and a machine leaning method to predict inter-individual differences of behaviour and responsiveness to environmental demands. The connectivity-based classification approach outperforms local activation-based classification analysis, suggesting that interactions in brain networks carry information of instantaneous cognitive processes. Secondly, we have recently established a brand new method combining transcranial alternating current stimulation (tACS), transcranial magnetic stimulation (TMS), and EEG. We use the method to measure signal transmission between brain areas while introducing extrinsic oscillatory brain activity and to study causal association between oscillatory activity and behaviour. We show that phase-matched oscillatory activity creates the phase-dependent modulation of signal transmission between brain areas, while phase-shifted oscillatory activity blunts the phase-dependent modulation. The results suggest that phase coherence between brain areas plays a cardinal role in signal transmission in the brain networks. In sum, I argue that causal approaches will provide more concreate backbones to cognitive neuroscience.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gebiet: Chirurgie Abstract: Minimized Extracorporeal Circulation does not impair cognitive brain function after coronary artery bypass grafting – – Objectives – Objective evaluation of the impact of minimized extracorporeal circulation (MECC) on perioperative cognitive brain function in coronary bypass grafting (CABG) by Electroencephalogram (EEG) P 300 wave event related potentials (ERP) and number connection test ( NCT) as metrics of cognitive function. – – Methods – Cognitive brain function was assessed in 31 patients with a mean age of 65y (Standard Deviation/SD 10) undergoing coronary artery bypass grafting (CABG) by the use of MECC with P300 auditory evoked potentials (peak latencies in milliseconds [ms]) directly prior to intervention, 7 days after and 3 month later. Number connection test (NCT), serving as method of control, was performed simultaneously in all patients. – – Results – Seven days following CABG, cognitive P300 evoked potentials were comparable to preoperative baseline values (vertex [Cz] 376 (SD 11) ms vs. 378 (18) ms, p=0.39, frontal [Fz] 377 (11) vs. 379 (21) ms, p=0.53). Cognitive brain function showed at 3 months compared to baseline values ([Cz] 376 (11) ms vs. 371 (14 ms) p=0.09, [Fz] 377 (11) ms vs. 371 (15) ms, p=0.04. Between the first postoperative measurement and 3 months later, significant improvement was observed ([Cz] 378 (18) ms vs. 371 (14) ms, p=0.03, [Fz] 379 (21) vs. 371 (15) ms, p=0.02). Similar clearly corresponding patterns could be obtained via number connection test. Results could be confirmed in repeated measures analysis of variance for Cz (p = 0.05) and (Fz) results (p = 0.04). – – Conclusions

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The sleep electroencephalogram (EEG) spectrum is unique to an individual and stable across multiple baseline recordings. The aim of this study was to examine whether the sleep EEG spectrum exhibits the same stable characteristics after acute total sleep deprivation. Polysomnography (PSG) was recorded in 20 healthy adults across consecutive sleep periods. Three nights of baseline sleep [12 h time in bed (TIB)] following 12 h of wakefulness were interleaved with three nights of recovery sleep (12 h TIB) following 36 h of sustained wakefulness. Spectral analysis of the non-rapid eye movement (NREM) sleep EEG (C3LM derivation) was used to calculate power in 0.25 Hz frequency bins between 0.75 and 16.0 Hz. Intraclass correlation coefficients (ICCs) were calculated to assess stable individual differences for baseline and recovery night spectra separately and combined. ICCs were high across all frequencies for baseline and recovery and for baseline and recovery combined. These results show that the spectrum of the NREM sleep EEG is substantially different among individuals, highly stable within individuals and robust to an experimental challenge (i.e. sleep deprivation) known to have considerable impact on the NREM sleep EEG. These findings indicate that the NREM sleep EEG represents a trait.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Schizophrenia patients show abnormalities in a broad range of task demands. Therefore, an explanation common to all these abnormalities has to be sought independently of any particular task, ideally in the brain dynamics before a task takes place or during resting state. For the neurobiological investigation of such baseline states, EEG microstate analysis is particularly well suited, because it identifies subsecond global states of stable connectivity patterns directly related to the recruitment of different types of information processing modes (e.g., integration of top-down and bottom-up information). Meanwhile, there is an accumulation of evidence that particular microstate networks are selectively affected in schizophrenia. To obtain an overall estimate of the effect size of these microstate abnormalities, we present a systematic meta-analysis over all studies available to date relating EEG microstates to schizophrenia. Results showed medium size effects for two classes of microstates, namely, a class labeled C that was found to be more frequent in schizophrenia and a class labeled D that was found to be shortened. These abnormalities may correspond to core symptoms of schizophrenia, e.g., insufficient reality testing and self-monitoring as during auditory verbal hallucinations. As interventional studies have shown that these microstate features may be systematically affected using antipsychotic drugs or neurofeedback interventions, these findings may help introducing novel diagnostic and treatment options.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Patients with schizophrenia show abnormal dynamics and structure of temporally ­coherent networks (TCNs) assessed using fMRI, which undergo adaptive shifts in preparation for a cognitively demanding task. During working memory (WM) tasks, patients with schizophrenia show persistent deficits in TCNs as well as EEG indices of WM. Studying their temporal relationship during WM tasks might provide novel insights into WM performance deficits seen in schizophrenia. Simultaneous EEG-fMRI data were acquired during the performance of a verbal Sternberg WM task with two load levels (load 2 and load 5) in 17 patients with schizophrenia and 17 matched healthy controls. Using covariance mapping, we investigated the relationship of the activity in the TCNs before the memoranda were encoded and EEG spectral power during the retention interval. We assessed four TCNs – default mode network (DMN), dorsal attention network (dAN), left and right working memory networks (WMNs) – and three EEG bands – theta, alpha, and beta. In healthy controls, there was a load-dependent inverse relation between DMN and frontal midline theta power and an anti-correlation between DMN and dAN. Both effects were not significantly detectable in patients. In addition, healthy controls showed a left-lateralized load-dependent recruitment of the WMNs. Activation of the WMNs was bilateral in patients, suggesting more resources were recruited for successful performance on the WM task. Our findings support the notion of schizophrenia patients showing deviations in their neurophysiological responses before the retention of relevant information in a verbal WM task. Thus, treatment strategies as neurofeedback ­targeting prestates could be beneficial as task performance relies on the preparatory state of the brain.