971 resultados para (K n) invariant mass distribution


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Explosions of sub-Chandrasekhar-mass white dwarfs (WDs) are one alternative to the standard Chandrasekhar-mass model of Type Ia supernovae (SNe Ia). They are interesting since binary systems with sub-Chandrasekhar-mass primary WDs should be common and this scenario would suggest a simple physical parameter which determines the explosion brightness, namely the mass of the exploding WD. Here we perform one-dimensional hydrodynamical simulations, associated post-processing nucleosynthesis, and multi-wavelength radiation transport calculations for pure detonations of carbon-oxygen WDs. The light curves and spectra we obtain from these simulations are in good agreement with observed properties of SNe Ia. In particular, for WD masses from 0.97 to 1.15 Msun we obtain 56Ni masses between 0.3 and 0.8 Msun, sufficient to capture almost the complete range of SN Ia brightnesses. Our optical light curve rise times, peak colors, and decline timescales display trends which are generally consistent with observed characteristics although the range of B-band decline timescales displayed by our current set of models is somewhat too narrow. In agreement with observations, the maximum light spectra of the models show clear features associated with intermediate-mass elements and reproduce the sense of the observed correlation between explosion luminosity and the ratio of the Si II lines at ?6355 and ?5972. We therefore suggest that sub-Chandrasekhar-mass explosions are a viable model for SNe Ia for any binary evolution scenario leading to explosions in which the optical display is dominated by the material produced in a detonation of the primary WD. © 2010. The American Astronomical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the double-detonation scenario for Type Ia supernovae, it is suggested that a detonation initiates in a shell of helium-rich material accreted from a companion star by a sub-Chandrasekhar-mass white dwarf. This shell detonation drives a shock front into the carbon-oxygen white dwarf that triggers a secondary detonation in the core. The core detonation results in a complete disruption of the white dwarf. Earlier studies concluded that this scenario has difficulties in accounting for the observed properties of Type Ia supernovae since the explosion ejecta are surrounded by the products of explosive helium burning in the shell. Recently, however, it was proposed that detonations might be possible for much less massive helium shells than previously assumed (Bildsten et al.). Moreover, it was shown that even detonations of these minimum helium shell masses robustly trigger detonations of the carbon-oxygen core (Fink et al.). Therefore, it is possible that the impact of the helium layer on observables is less than previously thought. Here, we present time-dependent multi-wavelength radiative transfer calculations for models with minimum helium shell mass and derive synthetic observables for both the optical and ? -ray spectral regions. These differ strongly from those found in earlier simulations of sub-Chandrasekhar-mass explosions in which more massive helium shells were considered. Our models predict light curves that cover both the range of brightnesses and the rise and decline times of observed Type Ia supernovae. However, their colors and spectra do not match the observations. In particular, their B - V colors are generally too red. We show that this discrepancy is mainly due to the composition of the burning products of the helium shell of the Fink et al. models which contain significant amounts of titanium and chromium. Using a toy model, we also show that the burning products of the helium shell depend crucially on its initial composition. This leads us to conclude that good agreement between sub-Chandrasekhar-mass explosions and observed Type Ia supernovae may still be feasible but further study of the shell properties is required.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The UV spectra of nova-like variables are dominated by emission from the accretion disk, modified by scattering in a wind emanating from the disk. Here, we model the spectra of RW Tri and UX UMa, the only two eclipsing nova-like variables which have been observed with the Hubble Space Telescope in the far-ultraviolet, in an attempt to constrain the geometry and the ionization structure of their winds. Using our Monte Carlo radiative transfer code, we computed spectra for simply parameterized axisymmetric biconical outflow models and were able to find plausible models for both systems. These reproduce the primary UV resonance lines-N v, Si iv, and C iv-in the observed spectra in and out of eclipse. The distribution of these ions in the wind models is similar in both cases as is the extent of the primary scattering regions in which these lines are formed. The inferred mass-loss rates are 6%-8% of the mass accretion rates for the systems. We discuss the implication of our point models for our understanding of accretion disk winds in cataclysmic variables. © 2010. The American Astronomical Society. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermonuclear explosions may arise in binary star systems in which a carbon-oxygen (CO) white dwarf (WD) accretes helium-rich material from a companion star. If the accretion rate allows a sufficiently large mass of helium to accumulate prior to ignition of nuclear burning, the helium surface layer may detonate, giving rise to an astrophysical transient. Detonation of the accreted helium layer generates shock waves that propagate into the underlying CO WD. This might directly ignite a detonation of the CO WD at its surface (an edge-lit secondary detonation) or compress the core of the WD sufficiently to trigger a CO detonation near the centre. If either of these ignition mechanisms works, the two detonations (helium and CO) can then release sufficient energy to completely unbind the WD. These 'double-detonation' scenarios for thermonuclear explosion of WDs have previously been investigated as a potential channel for the production of Type Ia supernovae from WDs of ~ 1 M . Here we extend our 2D studies of the double-detonation model to significantly less massive CO WDs, the explosion of which could produce fainter, more rapidly evolving transients. We investigate the feasibility of triggering a secondary core detonation by shock convergence in low-mass CO WDs and the observable consequences of such a detonation. Our results suggest that core detonation is probable, even for the lowest CO core masses that are likely to be realized in nature. To quantify the observable signatures of core detonation, we compute spectra and light curves for models in which either an edge-lit or compression-triggered CO detonation is assumed to occur. We compare these to synthetic observables for models in which no CO detonation was allowed to occur. If significant shock compression of the CO WD occurs prior to detonation, explosion of the CO WD can produce a sufficiently large mass of radioactive iron-group nuclei to significantly affect the light curves. In particular, this can lead to relatively slow post-maximum decline. If the secondary detonation is edge-lit, however, the CO WD explosion primarily yields intermediate-mass elements that affect the observables more subtly. In this case, near-infrared observations and detailed spectroscopic analysis would be needed to determine whether a core detonation occurred. We comment on the implications of our results for understanding peculiar astrophysical transients including SN 2002bj, SN 2010X and SN 2005E. © 2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context. The recent discovery of a very bright type la supernova, SNLS-03D3bb (=SN 2003fg), in the Supernova Legacy Survey (SNLS) has raised the question of whether super-Chandrasekhar-mass white-dwarf stars are needed to explain such bright explosions. Progenitors of this sort could form by mergers of pairs of rather massive white dwarfs. Binary systems of two white dwarfs in close orbit, where their total mass significantly exceeds the Chandrasekhar mass, have not yet been found. Therefore SNLS-03D3bb could establish the first clear case of a double-degenerate progenitor of a (peculiar) type la supernovae. Moreover, if this interpretation is correct, it casts some doubt on the universality of the calibration relations used to make SNe la distance indicators for cosmology. Aims. We aim to evaluate the case for a super-Chandrasekhar-mass progenitor for SNLS-03D3bb in light of previous theoretical work on super-Chandrasekhar-mass explosions. Furthermore, we propose an alternative scenario involving only a Chandrasekhar-mass progenitor. Methods. We present a theoretically motivated critical discussion of the expected observational fingerprints of super-Chandrasekharmass explosions. As an alternative, we describe a simple class of aspherical Chandrasekhar-mass models in which the products of nuclear burning are displaced from the center. We then perform simple radiative transfer calculations to predict synthetic lightcurves for one such off-center explosion model. Results. In important respects, the expected observational consequences of super-Chandrasekhar-mass explosions are not consistent with the observations of SNLS-03D3bb. We demonstrate that the lopsided explosion of a Chandrasekhar-mass white dwarf could provide a better explanation. © ESO 2007.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Type Ia supernovae are thought to result from thermonuclear explosions of carbong'oxygen white dwarf stars. Existing models generally explain the observed properties, with the exception of the sub-luminous 1991bg-like supernovae. It has long been suspected that the merger of two white dwarfs could give rise to a type Ia event, but hitherto simulations have failed to produce an explosion. Here we report a simulation of the merger of two equal-mass white dwarfs that leads to a sub-luminous explosion, although at the expense of requiring a single common-envelope phase, and component masses of 0.9M. The light curve is too broad, but the synthesized spectra, red colour and low expansion velocities are all close to what is observed for sub-luminous 1991bg-like events. Although the mass ratios can be slightly less than one and still produce a sub-luminous event, the masses have to be in the range 0.83M to 0.9M. © 2010 Macmillan Publishers Limited. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nucleotide sequence encoding the C terminus of the nucleocapsid protein of measles virus (MV) is the most variable in the genome. The sequence of this region is reported for 21 new MV strains and for virus RNA obtained from cases of subacute panencephalitis (SSPE) tissue. The nucleotide sequence of a total of 65 MV strains has been analysed using the CLUSTAL program to determine the relationships between the strains. An unrooted tree shows that eight different genotypes can be discerned amongst the sequences analysed so far. The data show that the C-terminal coding sequence of the nucleocapsid gene, although highly variable between strains, is stable in a given strain and does not appear to diverge in tissue culture. It therefore provides a good 'signature' sequence for specific genotypes. The sequence of this region can be used to discriminate new imported viruses from old 'endemic' strains of MV in a geographical area. The different genotypes are not geographically restricted although some appear to be the mainly 'endemic' types in large areas of the world. In global terms there appears to be at least four co-circulating genotypes of MV. The low level of divergence in the Edmonston lineage group isolated before 1970 indicates that some isolates are probably laboratory contaminants. This applies to some SSPE isolates such as the Halle, Mantooth and Horta-Barbosa strains as well as some wild-type isolates from that period.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has long been recognised that dispersal abilities and environmental factors are important in shaping invertebrate communities, but their relative importance for primary soil community assembly has not yet been disentangled. By studying soil communities along chronosequences on four recently emerged nunataks (ice-free land in glacial areas) in Iceland, we replicated environmental conditions spatially at various geographical distances. This allowed us to determine the underlying factors of primary community assembly with the help of metacommunity theories that predict different levels of dispersal constraints and effects of the local environment. Comparing community assembly of the nunataks with that of non-isolated deglaciated areas indicated that isolation of a few kilometres did not affect the colonisation of the soil invertebrates. When accounting for effects of geographical distances, soil age and plant richness explained a significant part of the variance observed in the distribution of the oribatid mites and collembola communities, respectively. Furthermore, null model analyses revealed less co-occurrence than expected by chance and also convergence in the body size ratio of co-occurring oribatids, which is consistent with species sorting. Geographical distances influenced species composition, indicating that the community is also assembled by dispersal, e.g. mass effect. When all the results are linked together, they demonstrate that local environmental factors are important in structuring the soil community assembly, but are accompanied with effects of dispersal that may "override" the visible effect of the local environment.