962 resultados para wind power plants


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mostly developed since the Industrial Revolution, the automation of systems and equipment around us is responsible for a technological progress and economic growth without precedents, but also by a relentless energy dependence. Currently, fossil fuels still tend to come as the main energy source, even in developed countries, due to the ease in its extraction and the mastery of the technology needed for its use. However, the perception of its ending availability, as well as the environmental impact of this practice has led to a growing energy production originated from renewable sources. Easy maintenance, coupled with the fact that they are virtually inexhaustible, makes the solar and wind energy very promising solutions. In this context, this work proposes to facilitate energy production from these sources. To this end, in this work the power inverter is studied, which is an equipment responsible for converting DC power available by solar or wind power in traditional AC power. Then it is discussed and designed a new architecture which, in addition to achieve a high energy e - ciency, has also the ability to adapt to the type of conversion desired by the user, namely if he wants to sell electricity to the power grid, be independent of it or bet on a self consumption system. In order to achieve the promised energy e ciency, the projected inverter uses a resonant DC-DC converter, whose architecture signi cantly decreases the energy dissipated in the conversion, allowing a higher power density. The adaptability of the equipment is provided by an adaptive control algorithm, responsible for assessing its behavior on every iteration and making the necessary changes to achieve maximum stability throughout the process. To evaluate the functioning of the proposed architecture, a simulation is presented using the PLECS simulation software.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The main aim of this study was to evaluate the impact of the urban pollution plume from the city of Manaus by emissions from mobile and stationary sources in the atmospheric pollutants concentrations of the Amazon region, by using The Weather Research and Forecasting with Chemistry (WRF-Chem) model. The air pollutants analyzed were CO, NOx, SO2, O3, PM2.5, PM10 and VOCs. The model simulations have been configured with a grid spacing of 3 km, with 190 x and 136 y grid points in horizontal spacing, centered in the city of Manaus during the period of 17 and 18 of March 2014. The anthropogenic emissions inventories have gathered from mobile sources that were estimated the emissions of light and heavy-duty vehicles classes. In addition, the stationary sources have considered the thermal power plants by the type of energy sources used in the region as well as the emissions from the refinery located in Manaus. Various scenarios have been defined with numerical experiments that considered only emissions by biogenic, mobile and stationary sources, and replacement fuel from thermal power plant, along with a future scenario consisting with twice as much anthropogenic emissions. A qualitative assessment of simulation with base scenario has also been carried out, which represents the conditions of the region in its current state, where several statistical methods were used in order to compare the results of air pollutants and meteorological fields with observed ground-based data located in various points in the study grid. The qualitative analysis showed that the model represents satisfactorily the variables analyzed from the point of view of the adopted parameters. Regarding the simulations, defined from the base scenarios, the numerical experiments indicate relevant results such as: it was found that the stationary sources scenario, where the thermal power plants are predominant, resulted in the highest concentrations, for all air pollutants evaluated, except for carbon monoxide when compared to the vehicle emissions scenario; The replacement of the energy matrix of current thermal power plants for natural gas have showed significant reductions in pollutants analyzed, for instance, 63% reductions of NOx in the contribution of average concentration in the study grid; A significant increase in the concentrations of chemical species was observed in a futuristic scenario, reaching up to a 81% increase in peak concentrations of SO2 in the study area. The spatial distributions of the scenarios have showed that the air pollution plume from Manaus is predominantly west and southwest, where it can reach hundreds of kilometers to areas dominated by original soil covering.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de energia

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work aims to develop optical sensors for temperature monitoring in hydroelectric power plant heat exchangers. The proposed sensors are based on the Fiber Bragg Gratings technology. First of all, a prototype with three sensors inscribed in a same fiber was developed. This fiber was then fixed to a conventional Pt100 sensor rod and inserted in a thermowell. The ensemble was then calibrated in a workbench, presenting a maximum combined uncertainty of 2,06 °C. The sensor was installed in one of the heat exchangers of the Salto Osório’s hydroelectric power plant. This power plant is situated in the Iguaçu river, at the Paraná state. Despite the satisfactory results, the sensor was improved to a second version. In this, fifteen optical Bragg sensors were inscribed in a same fiber. The fixation with a conventional sensor was no longer necessary, because the first version results comproved the efficiency and response time in comparison to a conventional sensor. For this reason, it was decided to position the fiber inside a stainless steel rod, due to his low thermal expansion coefficient and high corrosion immunity. The utilization of fifteen fiber Bragg gratings aims to improve the sensor spatial resolution. Therefore, measurements every ten centimeters with respect to the heat exchanger’s height are possible. This provides the generation of a thermal map of the heat exchanger’s surface, which can be used for determination of possible points of obstruction in the hydraulic circuit of the heat exchanger. The heat exchanger’s obstruction in hydroelectric power plants usually occur by bio-fouling, and has direct influence in the generator’s cooling system efficiency. The obtained results have demonstrated the feasibility in application of the optical sensors technology in hydroelectric power plants.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Power generation from alternative sources is at present the subject of numerous research and development in science and industry. Wind energy stands out in this scenario as one of the most prominent alternative in the generation of electricity, by its numerous advantages. In research works, computer reproduction and experimental behavior of a wind turbine are very suitable tools for the development and study of new technologies and the use of wind potential of a given region. These tools generally are desired to include simulation of mechanical and electrical parameters that directly affect the energy conversion. This work presents the energy conversion process in wind systems for power generation, in order to develop a tool for wind turbine emulation testing experimental, using LabVIEW® software. The purpose of this tool is to emulate the torque developed in an axis wind turbine. The physical setup consists of a three phase induction motor and a permanent magnet synchronous generator, which are evaluated under different wind speed conditions. This tool has the objective to be flexible to other laboratory arrangements, and can be used in other wind power generation structures in real time. A modeling of the wind power system is presented, from the turbine to the electrical generator. A simulation tool is developed using Matlab/Simulink® with the purpose to pre-validate the experiment setup. Finally, the design is implemented in a laboratory setup.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The electric power systems are getting more complex and covering larger areas day by day. This fact has been contribuiting to the development of monitoring techniques that aim to help the analysis, control and planning of power systems. Supervisory Control and Data Acquisition (SCADA) systems, Wide Area Measurement Systems and disturbance record systems. Unlike SCADA and WAMS, disturbance record systems are mainly used for offilne analysis in occurrences where a fault resulted in tripping of and apparatus such as a transimission line, transformer, generator and so on. The device responsible for record the disturbances is called Digital Fault Recorder (DFR) and records, basically, electrical quantities as voltage and currents and also, records digital information from protection system devices. Generally, in power plants, all the DFRs data are centralized in the utility data centre and it results in an excess of data that difficults the task of analysis by the specialist engineers. This dissertation shows a new methodology for automated analysis of disturbances in power plants. A fuzzy reasoning system is proposed to deal with the data from the DFRs. The objective of the system is to help the engineer resposnible for the analysis of the DFRs’s information by means of a pre-classification of data. For that, the fuzzy system is responsible for generating unit operational state diagnosis and fault classification.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this dissertation I quantify residential behavior response to interventions designed to reduce electricity demand at different periods of the day. In the first chapter, I examine the effect of information provision coupled with bimonthly billing, monthly billing, and in-home displays, as well as a time-of-use (TOU) pricing scheme to measure consumption over each month of the Irish Consumer Behavior Trial. I find that time-of-use pricing with real time usage information reduces electricity usage up to 8.7 percent during peak times at the start of the trial but the effect decays over the first three months and after three months the in-home display group is indistinguishable from the monthly treatment group. Monthly and bi-monthly billing treatments are not found to be statistically different from another. These findings suggest that increasing billing reports to the monthly level may be more cost effective for electricity generators who wish to decrease expenses and consumption, rather than providing in-home displays. In the following chapter, I examine the response of residential households after exposure to time of use tariffs at different hours of the day. I find that these treatments reduce electricity consumption during peak hours by almost four percent, significantly lowering demand. Within the model, I find evidence of overall conservation in electricity used. In addition, weekday peak reductions appear to carry over to the weekend when peak pricing is not present, suggesting changes in consumer habit. The final chapter of my dissertation imposes a system wide time of use plan to analyze the potential reduction in carbon emissions from load shifting based on the Ireland and Northern Single Electricity Market. I find that CO2 emissions savings are highest during the winter months when load demand is highest and dirtier power plants are scheduled to meet peak demand. TOU pricing allows for shifting in usage from peak usage to off peak usage and this shift in load can be met with cleaner and cheaper generated electricity from imports, high efficiency gas units, and hydro units.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The insertion of distributed generation units in the electric power systems have contributed to the popularization of microgrid concepts. With the microgrids, several potential benefits can be achieved in regard to power quality and supply reliability. However, several technical challenges related to the control and operation of microgrids, which are associated with high insertion of generation systems based on static converters, must be overcame. Among the opportunities in the context of microgrids, there is the islanded operation of microgrids temporarily disconnected from the electric power systems and also the autonomous operation of geographically isolated microgrids. The frequency in large power systems is traditionally controlled by the generation units based on traditional synchronous generator. The insertion of distributed generation units based on static power converters may bring difficulties to the frequency control in microgrids, due to the reduction of the equivalent inertia of conventional synchronous generators present in islanded and isolated microgrids. In this context, it becomes necessary the proposition of new operational and control strategies for microgrids control, taking into account the presence of distributed generation units based on full-rated converter. This paper proposes an operational and control strategy for the islanded operation of a winddiesel microgrid with high insertion level of wind generation. The microgrid adopted in this study comprises of a wind energy conversion system with synchronous generator based on full rated converter, a diesel generator (DIG) and a dump load. Due to the high insertion level of wind generation, the wind unit operates in Vf mode and the diesel generator operates in PQ mode. The diesel generator and the dump load are used to regulate the DC-link voltage of the wind generation unit. The proposed control allows the islanded operation of the microgrid only with wind generation, wind-only mode (WO), and with wind-diesel generation, wind-diesel mode (WD). For the wind-only mode, with 100% of penetration level of wind generation, it is proposed a DC-link voltage control loop based on the use of a DC dump load. For the winddiesel mode, it is proposed a DC-link voltage control loop added to the diesel generator, which is connected to the AC side of the microgrid, in coordinated action with the dump load. The proposed operational and control strategy does not require the use of batteries and aims to maximize the energy production from wind generation, ensuring the uninterrupted operation of the microgrid. The results have showed that the operational and control strategy allowed the stable operation of the islanded microgrid and that the DC-link voltage control loop added to the diesel generator and the dump load proved to be effective during the typical variations of wind speed and load.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

En el presente artículo se evalúan las propiedades mecánicas de los materiales compuestos basados en cenizas volantes de carbón de la central termoeléctrica de Termozipa combinadas con los película extensible (Stretch film), polietilenos de baja densidad lineal de pos-consumo y polímero termoplástico parcialmente cristalino pos- industrial. Se obtuvieron mezclas variando el contenido de cenizas volantes de 0 a 50 % en peso en cada uno de los tres materiales poliméricos, dentro de una máquina mezcladora tipo Brabender. Las propiedades mecánicas evaluadas fueron: resistencia a la tracción, dureza Shore D, y absorción de energía. Los resultados obtenidos indican que en todos los casos a medida que se agrega ceniza volante las propiedades mecánicas aumentan.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Esta dissertação incide sobre o tema da coordenação entre sistemas eólicos e fotovoltaicos que participam no mercado de eletricidade. A incerteza da potência eólica e fotovoltaica é uma caraterística predominante nesta coordenação, devendo ser considerada no planeamento ótimo de sistemas eólico-fotovoltaicos. A fim de modelizar a incerteza é apresentada uma metodologia de otimização estocástica baseada em programação linear para maximizar o lucro esperado de uma empresa produtora de energia elétrica que participa no mercado diário. A coordenação entre sistemas eólicos e fotovoltaicos visa mitigar os desequilíbrios de energia, resultantes das ofertas horárias submetidas no mercado diário e, consequentemente, reduzir as penalizações financeiras. Os resultados da coordenação entre um sistema eólico e um sistema fotovoltaico são comparados com os resultados obtidos para a operação não coordenada. Estes resultados permitem concluir que a metodologia desenvolvida aplicada à coordenação apresenta um lucro esperado superior ao lucro obtido para a operação não coordenada; Abstract Stochastic Optimization Methodology for Wind-Photovoltaic Coordination This dissertation focuses on the issue of coordination between wind and photovoltaic systems participating in electricity markets. The uncertainty of wind and photovoltaic power is a main characteristic of these systems, which must be included in the optimal scheduling of the coordination of wind with photovoltaic systems. In order to model the uncertainty is presented a stochastic approach based on linear programming to maximize the profit of a wind photovoltaic power producer which participates in electricity markets. The coordination of wind with photovoltaic systems aims to mitigate the energy deviations, as a result of the participation in day-ahead market and therefore reducing economic penalties. The results obtained by the coordination are compared to results obtained by the separated operation of wind and photovoltaic systems. The results allow concluding that the proposed approach applied to the coordination presents an expected profit higher than the expected profit without coordination.

Relevância:

80.00% 80.00%

Publicador: