950 resultados para vortex loop


Relevância:

10.00% 10.00%

Publicador:

Resumo:

AbstractPurpose: to evaluate the tolerability, comfort and precision of the signal transmission of an ocular Sensor used for 24-hour intraocular pressure fluctuation monitoring in humans.Patients and methods: In this uncontrolled open trial involving 10 healthy volunteers an 8.7 mm radius prototype ocular telemetry Sensor (SENSIMED Triggerfish®, Lausanne, Switzerland) and an orbital bandage containing a loop antenna were applied and connected to a portable recorder after full eye examination. Best corrected visual acuity and position, surface wetting ability and mobility of the Sensor were assessed after 5 and 30 minutes, 4, 12 and 24 hours. Subjective wearing comfort was scored and activities documented in a logbook. After Sensor removal a full eye examination was repeated and the recorded signal analyzed.Results: The comfort score was high and did not fluctuate significantly over time. The mobility of the Sensor was limited across follow-up visits and its surface wetting ability remained good. Best corrected visual acuity was significantly reduced during Sensor wear and immediately after its removal (from 1.07 before, to 0.85 after, P-value 0.008). Three subjects developed a mild, transient corneal abrasion. In all but one participant we obtained usable data of a telemetric signal recording with sufficient sensitivity to depict ocular pulsation.Conclusions: This 24-hour- trial has encouraging results on the tolerability and functionality of the ocular telemetric Sensor for intraocular pressure fluctuation monitoring. Further studies with different Sensor radii conducted on a larger study population are needed to improve comfort, precision and interpretation of the telemetric signal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oral administration of rabbit secretory IgA (sIgA) to adult BALB/c mice induced IgA+, IgM+, and IgG+ lymphoblasts in the Peyer's patches, whose fusion with myeloma cells resulted in hybridomas producing IgA, IgM, and IgG1 antibodies to the secretory component (SC). This suggests that SC could serve as a vector to target protective epitopes into mucosal lymphoid tissue and elicit an immune response. We tested this concept by inserting a Shigella flexneri invasin B epitope into SC, which, following reassociation with IgA, was delivered orally to mice. To identify potential insertion sites at the surface of SC, we constructed a molecular model of the first and second Ig-like domains of rabbit SC. A surface epitope recognized by an SC-specific antibody was mapped to the loop connecting the E and F beta strands of domain I. This 8-amino acid sequence was replaced by a 9-amino acid linear epitope from S. flexneri invasin B. We found that cellular trafficking of recombinant SC produced in mammalian CV-1 cells was drastically altered and resulted in a 50-fold lower rate of secretion. However, purification of chimeric SC could be achieved by Ni2+-chelate affinity chromatoraphy. Both wild-type and chimeric SC bound to dimeric IgA, but not to monomeric IgA. Reconstituted sIgA carrying the invasin B epitope within the SC moiety triggers the appearance of seric and salivary invasin B-specific antibodies. Thus, neo-antigenized sIgA can serve as a mucosal vaccine delivery system inducing systemic and mucosal immune responses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Members of the ENaC/degenerin family of ion channels include the epithelial sodium channel (ENaC), acid-sensing ion channels (ASICs) and the nematode Caenorhabditis elegans degenerins. These channels are activated by a variety of stimuli such as ligands (ASICs) and mechanical forces (degenerins), or otherwise are constitutively active (ENaC). Despite their functional heterogeneity, these channels might share common basic mechanisms for gating. Mutations of a conserved residue in the extracellular loop, namely the 'degenerin site' activate all members of the ENaC/degenerin family. Chemical modification of a cysteine introduced in the degenerin site of rat ENaC (betaS518C) by the sulfhydryl reagents MTSET or MTSEA, results in a approximately 3-fold increase in the open probability. This effect is due to an 8-fold shortening of channel closed times and an increase in the number of long openings. In contrast to the intracellular gating domain in the N-terminus which is critical for channel opening, the intact extracellular degenerin site is necessary for normal channel closing, as illustrated by our observation that modification of betaS518C destabilises the channel closed state. The modification by the sulfhydryl reagents is state- and size-dependent consistent with a conformational change of the degenerin site during channel opening and closing. We propose that the intracellular and extracellular modulatory sites act on a common channel gate and control the activity of ENaC at the cell surface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Gac/Rsm signal transduction pathway positively regulates secondary metabolism, production of extracellular enzymes, and biocontrol properties of Pseudomonas fluorescens CHA0 via the expression of three noncoding small RNAs, termed RsmX, RsmY, and RsmZ. The architecture and function of the rsmY and rsmZ promoters were studied in vivo. A conserved palindromic upstream activating sequence (UAS) was found to be necessary but not sufficient for rsmY and rsmZ expression and for activation by the response regulator GacA. A poorly conserved linker region located between the UAS and the -10 promoter sequence was also essential for GacA-dependent rsmY and rsmZ expression, suggesting a need for auxiliary transcription factors. One such factor involved in the activation of the rsmZ promoter was identified as the PsrA protein, previously recognized as an activator of the rpoS gene and a repressor of fatty acid degradation. Furthermore, the integration host factor (IHF) protein was found to bind with high affinity to the rsmZ promoter region in vitro, suggesting that DNA bending contributes to the regulated expression of rsmZ. In an rsmXYZ triple mutant, the expression of rsmY and rsmZ was elevated above that found in the wild type. This negative feedback loop appears to involve the translational regulators RsmA and RsmE, whose activity is antagonized by RsmXYZ, and several hypothetical DNA-binding proteins. This highly complex network controls the expression of the three small RNAs in response to cell physiology and cell population densities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The SLC2 family of glucose and polyol transporters comprises 13 members, the glucose transporters (GLUT) 1-12 and the H(+)- myo-inositol cotransporter (HMIT). These proteins all contain 12 transmembrane domains with both the amino and carboxy-terminal ends located on the cytoplasmic side of the plasma membrane and a N-linked oligosaccharide side-chain located either on the first or fifth extracellular loop. Based on sequence comparison, the GLUT isoforms can be grouped into three classes: class I comprises GLUT1-4; class II, GLUT6, 8, 10, and 12 and class III, GLUT5, 7, 9, 11 and HMIT. Despite their sequence similarity and the presence of class-specific signature sequences, these transporters carry various hexoses and HMIT is a H(+)/ myo-inositol co-transporter. Furthermore, the substrate transported by some isoforms has not yet been identified. Tissue- and cell-specific expression of the well-characterized GLUT isoforms underlies their specific role in the control of whole-body glucose homeostasis. Numerous studies with transgenic or knockout mice indeed support an important role for these transporters in the control of glucose utilization, glucose storage and glucose sensing. Much remains to be learned about the transport functions of the recently discovered isoforms (GLUT6-13 and HMIT) and their physiological role in the metabolism of glucose, myo-inositol and perhaps other substrates.