998 resultados para vegetation condition


Relevância:

20.00% 20.00%

Publicador:

Resumo:

1.Sex allocation theory has received considerable attention, yet the mechanism(s) by which mothers skew offspring sex ratios remain unknown. In birds, females are the heterogametic sex, which potentially gives them control of whether gametes will be male or female. How females might control the sex of the gamete is unclear, but one possibility is that variation in steroid hormones may mediate this process. 2.We experimentally altered circulating levels of corticosterone in female Gouldian finches (Erythrura gouldiae), a species that demonstrates both extreme stress responses and extreme offspring sex ratio biases when breeding with a low-quality (genetically incompatible) partner. 3.During egg production, individual females received both corticosterone and metyrapone (a corticosterone-synthesis inhibitor) implants, in random order, to induce both high and low levels of circulating stress hormones (within physiological limits). 4.We found that females with elevated corticosterone levels produced male-biased sex ratios, but when the same females were treated with metyrapone they produced female-biased offspring sex ratios. 5.These stress responses are adaptive because females constrained to breeding with low-quality males can substantially increase their fitness by overproducing sons. Changes in maternal corticosterone levels during stressful situations, such as the quality of a breeding partner, may provide an endocrine mechanism that can be exploited for strategic sex allocation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Identifying landscape patterns that allow native fauna to coexist with human land use is a global challenge. Riparian vegetation often persists in anthropogenic environments as strips of natural or semi-natural vegetation that provide habitat for many terrestrial species. Its relative contribution to landscape-scale conservation is likely to change as environments become increasingly modified. We used a ‘whole of landscape’ approach to test the hypothesis that riparian vegetation offers disproportionate benefits, relative to non-riparian vegetation, for the conservation of woodland birds in highly modified agricultural landscapes. 2. We selected 24 landscapes, each 100 km2, along a gradient of landscape change represented by decreasing cover of native vegetation (from 60% to <2%), in an agricultural region in SE Australia. Bird species were systematically surveyed at three riparian and seven non-riparian sites in wooded vegetation in each landscape. 3. Riparian sites supported a greater richness of woodland-dependent species, a group of conservation concern, than did non-riparian sites. The composition of assemblages also differed between site types. 4. At the landscape scale, the pooled richness of bird assemblages at riparian and non-riparian sites, respectively, decreased with overall loss of tree cover despite constant sampling effort. Within landscapes, the β-diversity of woodland species among non-riparian sites increased (composition became less similar) as landscape tree cover declined. In contrast, riparian assemblages were relatively stable with no change in β-diversity. Importantly, as landscape tree cover declined, the proportion of woodland species uniquely present at riparian sites increased and made a greater contribution to overall landscape diversity. 5. Synthesis and applications. Landscape-scale richness of woodland species declines as landscape tree cover is lost. In highly depleted landscapes, riparian vegetation retains a relatively rich, stable assemblage compared with that in heterogeneous remnants of non-riparian vegetation and consequently contributes disproportionately to landscape-scale diversity. These observations, together with the diverse benefits of riparian vegetation for aquatic ecosystems, mean that protection and restoration of riparian vegetation is a high priority in anthropogenic environments. Importantly, such actions are directly amenable to individual land managers, and the benefits will accumulate to enhance the persistence and conservation of species at landscape and regional scales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Complexity is increasingly the hallmark in environmental management practices of sandy shorelines. This arises primarily from meeting growing public demands (e.g., real estate, recreation) whilst reconciling economic demands with expectations of coastal users who have modern conservation ethics. Ideally, shoreline management is underpinned by empirical data, but selecting ecologically-meaningful metrics to accurately measure the condition of systems, and the ecological effects of human activities, is a complex task. Here we construct a framework for metric selection, considering six categories of issues that authorities commonly address: erosion; habitat loss; recreation; fishing; pollution (litter and chemical contaminants); and wildlife conservation. Possible metrics were scored in terms of their ability to reflect environmental change, and against criteria that are widely used for judging the performance of ecological indicators (i.e., sensitivity, practicability, costs, and public appeal). From this analysis, four types of broadly applicable metrics that also performed very well against the indicator criteria emerged: 1.) traits of bird populations and assemblages (e.g., abundance, diversity, distributions, habitat use); 2.) breeding/reproductive performance sensu lato (especially relevant for birds and turtles nesting on beaches and in dunes, but equally applicable to invertebrates and plants); 3.) population parameters and distributions of vertebrates associated primarily with dunes and the supralittoral beach zone (traditionally focused on birds and turtles, but expandable to mammals); 4.) compound measurements of the abundance/cover/biomass of biota (plants, invertebrates, vertebrates) at both the population and assemblage level. Local constraints (i.e., the absence of birds in highly degraded urban settings or lack of dunes on bluff-backed beaches) and particular issues may require alternatives. Metrics - if selected and applied correctly - provide empirical evidence of environmental condition and change, but often do not reflect deeper environmental values per se. Yet, values remain poorly articulated for many beach systems; this calls for a comprehensive identification of environmental values and the development of targeted programs to conserve these values on sandy shorelines globally.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seasonal changes in avian hormonal stress responses and condition are well known for common species found at temperate and arctic latitudes, but declining and tropical species are poorly studied. This study compares stress and condition measures of co-occurring declining and non-declining tropical grass finch species in Australia. We monitored declining Gouldian finches (Erythrura gouldiae) and non-declining long-tailed and masked finches (Poepila acuticauda and P. personata) during two seasons that are potentially stressful: peak breeding (early dry season when food is plentiful) and moult (late dry to early wet season when food may be scarce). We measured body condition (muscle and fat), haematocrit, and stress response to capture using plasma corticosterone and binding globulin concentrations. All species had higher muscle and lower fat indices during breeding than moult. Haematocrit did not consistently differ between seasons. Long-tailed finches had higher stress responses during breeding than moult, similar to other passerines studied. Masked finches showed no seasonal changes in stress response. Gouldian finches had stress response patterns opposite to those of long-tailed finches, with higher stress responses during moult. However, seasonal trends in Gouldian and long-tailed finch stress responses sometimes differed between years or sites. The differences in stress response patterns between species suggest that the declining Gouldian finch is more sensitive to recent environmental changes which are thought to further reduce grass seed food resources during the late dry to early wet season. Retention of stress responsiveness during a protracted moult could increase the survival potential of Gouldian finches. This study highlights the utility of stress and condition indices to determine the sensitivity of co-occurring species to environmental conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Immobilization of catechol derivatives on GC electrode surfaces can be performed by in situ generation and reduction of nitrocatechol. We present the oxidative nitration of catechol in the presence of nitrous acid followed by electrochemically reduction of the generated nitro aromatic group to the corresponding amine group and its conversion to diazonium cation at the electrode surface to yield a surface covalently modified with catechol. In this manner, some derivatives of catechol can be immobilized on the electrode surface. Whole of the process is carried out in Triethylammonium acetate ionic liquid as an inert and neutral medium (pH∼7.0). Surface coverage can be easily controlled by the applied potential, time and concentration of catechol. After modification, the electrochemical features of modified surface have been studied. Also modified GC electrode exhibited remarkable catalytic activity in the oxidation of NADH. The catalytic currents were proportional to the concentration of NADH over the range 0.01-0.80 mM. This condition can be used for modification of GC surfaces by various aromatic molecules for different application such as design of sensors and biosensors. © 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a review on condition monitoring of induction motors is first presented. Then, an ensemble of hybrid intelligent models that is useful for condition monitoring of induction motors is proposed. The review covers two parts, i.e.; (i) a total of nine commonly used condition monitoring methods of induction motors; and (ii) intelligent learning models for condition monitoring of induction motors subject to single and multiple input signals. Based on the review findings, the Motor Current Signature Analysis (MCSA) method is selected for this study owing to its online, non-invasive properties and its requirement of only single input source; therefore leading to a cost-effective condition monitoring method. A hybrid intelligent model that consists of the Fuzzy Min-Max (FMM) neural network and the Random Forest (RF) model comprising an ensemble of Classification and Regression Trees is developed. The majority voting scheme is used to combine the predictions produced by the resulting FMM-RF ensemble (or FMM-RFE) members. A benchmark problem is first deployed to evaluate the usefulness of the FMM-RFE model. Then, the model is applied to condition monitoring of induction motors using a set of real data samples. Specifically, the stator current signals of induction motors are obtained using the MCSA method. The signals are processed to produce a set of harmonic-based features for classification using the FMM-RFE model. The experimental results show good performances in both noise-free and noisy environments. More importantly, a set of explanatory rules in the form of a decision tree can be extracted from the FMM-RFE model to justify its predictions. The outcomes ascertain the effectiveness of the proposed FMM-RFE model in undertaking condition monitoring tasks, especially for induction motors, under different environments. © 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deakin University and the Department of Primary Industries were commissioned by ParksVictoria (PV) to create two updated habitat maps for Yaringa and French Island MarineNational Parks. The team obtained a ground-truth data set using in situ video and still photographs. This dataset was used to develop and assess predictive models of benthic marine habitat distributions incorporating data from World-View-2 imagery atmospherically corrected by CSIRO and LiDAR (Light Detection and Ranging) bathymetry. In addition, the team applied an unsupervised classification approach to an aerial photograph to assess the differences between the two remote sensors. This report describes the results of the mapping as well as the methodology used to produce these habitat maps.This study has provided mapping of intertidal and subtidal habitats of Yaringa and FrenchIsland MNPs at a 2 m resolution with fair to good accuracies (Kappa 0.40-0.75). These were combined with mangrove and saltmarsh habitats recently mapped by Boon et al. (2011) to provide compete-coverage habitat maps of Yaringa and French Island MNPs.The mapping showed that Yaringa MNP was dominated by mangroves, wet saltmarsh and dense Zostereaceae, covering 33%, 29% and 19%, respectively. Similarly, intertidalvegetation and subtidal vegetation (dominated by Zosteraceae) covered 26% and 25% ofFrench Island MNP. However, as a result of turbidity and missing satellite imagery 27% ofFrench Island MNP remains unmapped.The coupling of WV-2 and LiDAR reduced potential artefacts (e.g. sun glint causing whiteand black pixels known as the “salt and pepper effect”). The satellite classification appeared to provide better results than the aerial photography classification. However, since there is a two-year difference between the capture of the aerial photography and the collection of the ground-truth data this comparison is potentially temporally confounded. It must also be noted that there are differences in costs of the data,the spatial resolution between the two datasets (i.e. WV-2 = 2 m and the Aerial = 0.5 m) and the amount spectral information contained in the data (i.e. WV-2 = 8 bands and the aerial = 4 bands), which may ultimately determine its utility for a particular project.The spatial assessment using FRAGSTATs of habitat patches within Yaringa MNP provides a viable and cost effect way to assess habitat condition (i.e. shape, size and arrangement).This spatial assessment determined that dense Zosteraceae and NVSG habitat classeswere generally larger in patch size and continuity than the medium/sparse Zosteraceaehabitat. The application spatial techniques to time-series mapping may provide a way toremotely monitor the change in the spatial characteristics of marine habitats.This work was successful in providing new baseline habitat maps using a repeatable method meaning that any future changes in intertidal and shallow water marine habitats may be assessed in a consistent way with quantitative error assessments. In wider use, these maps should also allow improved conservation planning, fisheries and catchment management, and contribute toward infrastructure planning to limit impacts on Western Port.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A condition monitoring system for induction motors using a hybrid Fuzzy Min-Max (FMM) neural network and Genetic Algorithm (GA) is presented in this paper. Two types of experiments, one from the finite element method and another from real laboratory tests of broken rotor bars in an induction motor are conducted. The induction motor with broken rotor bars is operated under different load conditions. FMM is first used for learning and distinguishing between a healthy motor and one with broken rotor bars. The GA is then utilized for extracting fuzzy if-then rules using the don’t care approach in minimizing the number of rules. The results clearly demonstrate the effectiveness of the hybrid FMM-GA model in condition monitoring of broken rotor bars in induction motors.