965 resultados para uranium ions
Resumo:
Hollandite-type manganese oxides are nanofibrous crystals with sub-nanometer open tunnels that provide a unique property for sensing applications. Sensor based on hollandite-type manganese oxide was investigated for amperometric detection of potassium. With an operating potential of +0.63 V versus SCE, potassium ions produce oxidation currents at the sensor, which can be exploited for quantitative determinations. The amperometric signals are linearly proportional to potassium ions concentration in the range 2.7 x 10(-4) to 9.1 x 10(-4) Mol l(-1) with a correlation coefficient of 0.9990. The construction and renewal are simple and inexpensive.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Lignins extracted from sugar cane bagasse using different alcohols in the organosolv-CO(2) supercritical pulping process have been applied in the fabrication of ultrathin films through the Langmuir-Blodgett technique. Langmuir films were characterized by surface pressure versus mean molecular area (Pi-A) isotherms to exploit the sensitivity of nanostructured lignin films to metallic ions (Cu(2+), Cd(2+) and Pb(2+)). The Pi-A isotherms were shifted to larger molecular areas when heavy metal ions are present into the subphase, which might be related to electrostatic repulsions between metallic ions entrapped within the lignin molecular structure. Taking the advantage of metal incorporation, Langmuir monolayers were transferred onto solid substrates forming Langmuir-Blodgett (LB) films to be used as a transducer in an "electronic tongue" system to detect Cu(2+) in aqueous solution below threshold standard established by the Brazilian regulation. Both techniques impedance spectroscopy and electrochemistry have been used in these experiments. Complementary, Fourier transform infrared (FTIR) spectroscopy recorded for LB films before and after soaking into Cu(2+) aqueous solution revealed an interaction between the lignin phenyl groups and the metallic ion. (C) 2007 Elsevier B.V.. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In the work described by this paper, we studied the development of a selective potassium ion sensor constituted of a carbon paste electrode modified (CPEM) with a novel KSr(2)Nb(2)O(15). The material KSr(2)Nb(2)O(15) is an oxide with the tetragonal tungsten bronze structure (TTB) type are in forefront both in the area of research as well as in industrial applications. The sensor response to potassium ions was linear in the concentration range 1.26 x 10(-5) at 1.62 x 10(-3) mol L(-1) (E (mV) = 32.7 + 51.1 log [K(+)]). The sensor based KSr(2)Nb(2)O(15), of the TTB-type presented very good potentiometric response, with a slope of 51.1 mV/dec (at 25 degrees C) and detection limit for the potassium ions of 7.27 x 10(-5) mol.L(-1)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The present investigation reports the synthesis, characterization, and adsorption properties of a new nanomaterial based on organomodified silsesquioxane nanocages. The adsorption isotherms for CuCl,, CoCl2, ZnCl2, NiCl2, and FeCl3 from ethanol solutions were performed by using the batchwise method. The equilibrium condition is reached very quickly (3 min), indicating that the adsorption sites are well exposed. The results obtained in the flow experiments, showed a recovery of ca. 100% of the metal ions adsorbed in a column packed with 2 g of the nanomaterial, using 5 mL of 1.0 mol L-1 HCl solution as eluent. The sorption-desorption of the metal ions made possible the development of a method for preconcentration and determination of metal ions at trace level in commercial ethanol, used as fuel for car engines. The values determined by recommended method for plants 1, 2, and 3 indicated an amount of copper of 51, 60, and 78 mu g L-1, and of iron of 2, 15, and 13 mu g L-1, respectively. These values are very close to those determined by conventional analytical methods. Thus, these similar values demonstrated the accuracy of the determination by recommended method.
Resumo:
The material octakis[3-(3-amino- 1,2,4-triazole)propyl]octasilsesquioxane (ATZ-SSQ) was synthesized and its potential was assessed for Cu(II), Ni(II), Co(II), Zn(II) and Fe(III) from their ethanol solutions and compared with related 3-amino-1,2,4-triazole-propyl modified silica gel (ATZ-SG). The adsorption was performed using a batchwise process and both organofunctionalized surfaces showed the ability to adsorb the metal ions from ethanol solution. The Langmuir model allowed to describe the sorption of the metal ions on ATZ-SSQ and ATTZ-SG in a satisfactory way. The equilibrium is reached very quickly Q min) for ATZ-SSQ, indicating that the adsorption sites are well exposed. The maximum metal ion uptake values for Cu(II), Co(II), Zn(II), Ni(II) and Fe(III) were 0.86, 0.09, 0.19, 0.09 and 0.10 mmol g(-1), respectively, for the ATZ-SSQ, which were higher than the corresponding values 0.21, 0.04, 0.14, 0.05 and 0.07 mmol g(-1) achieved with the ATZ-SG. In order to obtain more information on the metal-ligand interaction of the complexes on the surface of the ATZ-SSQ, Cu(II) was used as a probe to determine the arrangements of the ligands around the central metal ion by electron spin resonance (ESR). The ATZ-SSQ was used for the separation and determination (in flow using a column technique) of the metal ions present in commercial ethanol. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)