971 resultados para upper level (UL) coupling field
Resumo:
The coupling relationships between hillslope and channel network are fundamental for the understanding of mountainous landscapes' evolution. Here, we applied dendrogeomorphic methods to identify the hillslope–channel relationship and the sediment transfer dynamics within an alpine catchment, at the highest possible resolution. The Schimbrig catchment is located in the central Swiss Alps and can be divided into two distinct geomorphic sectors. To the east, the Schimbrig earth flow is the largest sediment source of the basin, while to the west, the Rossloch channel network is affected by numerous shallow landslides responsible for the supply of sediment from hillslopes to channels. To understand the connectivity between hillslopes and channels and between sources and sink, trees were sampled along the main Rossloch stream, on the Schimbrig earth flow and on the Rossloch depositional area. Geomorphic observations and dendrogeomophic results indicate different mechanisms of sediment production, transfer and deposition between upper and lower segments of the channel network. In the source areas (upper part of the Rossloch channel system), sediment is delivered to the channel network through slow movements of the ground, typical of earth flow, shallow landslides and soil creep. Contrariwise, in the depositional area (lower part of the channel network), the mechanisms of sediment transfer are mainly due to torrential activity, floods and debris flows. Tree analysis allowed the reconstruction of periods of high activity during the last century for the entire catchment. The collected dataset presents a very high temporal resolution but we encountered some limitations in establishing the source-to-sink connectivity at the catchment-wide scale. Despite these uncertainties, for decennial timescales the results suggest a direct coupling between hillslopes and neighbouring channels in the Rossloch channel network, and a de-coupling between sediment sources and sink farther downstream, with connections possible only during extraordinary events.
Resumo:
An understanding of interruptions in healthcare is important for the design, implementation, and evaluation of health information systems and for the management of clinical workflow and medical errors. The purpose of this study is to identify and classify the types of interruptions experienced by Emergency Department(ED) nurses working in a Level One Trauma Center. This was an observational field study of Registered Nurses (RNs) employed in a Level One Trauma Center using the shadowing method. Results of the study indicate that nurses were both recipients and initiators of interruptions. Telephones, pagers, and face-to-face conversations were the most common sources of interruptions. Unlike other industries, the healthcare community has not systematically studied interruptions in clinical settings to determine and weigh the necessity of the interruption against their sometimes negative results such as medical errors, decreased efficiency, and increased costs. Our study presented here is an initial step to understand the nature, causes, and effects of interruptions, thereby improving both the quality of healthcare and patient safety. We developed an ethnographic data collection technique and a data coding method for the capturing and analysis of interruptions. The interruption data we collected are systematic, comprehensive, and close to exhaustive. They confirmed the findings from earlier studies by other researchers that interruptions are frequent events in critical care and other healthcare settings. We are currently using these data to analyze the workflow dynamics of ED clinicians, to identify the bottlenecks of information flow, and to develop interventions to improve the efficiency of emergency care through the management of interruptions.
Resumo:
An understanding of interruptions in healthcare is important for the design, implementation, and evaluation of health information systems and for the management of clinical workflow and medical errors. The purpose of this study is to identify and classify the types of interruptions experienced by ED nurses working in a Level One Trauma Center. This was an observational field study of Registered Nurses employed in a Level One Trauma Center using the shadowing method. Results of the study indicate that nurses were both recipients and initiators of interruptions. Telephone, pagers, and face-to-face conversations were the most common sources of interruptions. Unlike other industries, the outcomes caused by interruptions resulting in medical errors, decreased efficiency and increased cost have not been systematically studied in healthcare. Our study presented here is an initial step to understand the nature, causes, and effects of interruptions, and to develop interventions to manage interruptions to improve healthcare quality and patient safety. We developed an ethnographic data collection technique and a data coding method for the capturing and analysis of interruptions. The interruption data we collected are systematic, comprehensive, and close to exhaustive. They confirmed the findings from early studies by other researchers that interruptions are frequent events in critical care and other healthcare settings. We are currently using these data to analyze the workflow dynamics of ED clinicians, identify the bottlenecks of information flow, and develop interventions to improve the efficiency of emergency care through the management of interruptions.
Resumo:
Mass spectrometric analysis of elemental and isotopic compositions of several NIST standards is performed by a miniature laser ablation/ionisation reflectron-type time-of-flight mass spectrometer (LMS) using a fs-laser ablation ion source (775 nm, 190 fs, 1 kHz). The results of the mass spectrometric studies indicate that in a defined range of laser irradiance (fluence) and for a certain number of accumulations of single laser shot spectra, the measurements of isotope abundances can be conducted with a measurement accuracy at the per mill level and at the per cent level for isotope concentrations higher and lower than 100 ppm, respectively. Also the elemental analysis can be performed with a good accuracy. The LMS instrument combined with a fs-laser ablation ion source exhibits similar detection efficiency for both metallic and non-metallic elements. Relative sensitivity coefficients were determined and found to be close to one, which is of considerable importance for the development of standard-less instruments. Negligible thermal effects, sample damage and excellent characteristics of the fs-laser beam are thought to be the main reason for substantial improvement of the instrumental performance compared to other laser ablation mass spectrometers.
Resumo:
We report on a new measurement of the neutron beta-asymmetry parameter A with the instrument \perkeo. Main advancements are the high neutron polarization of P=99.7(1) from a novel arrangement of super mirror polarizers and reduced background from improvements in beam line and shielding. Leading corrections were thus reduced by a factor of 4, pushing them below the level of statistical error and resulting in a significant reduction of systematic uncertainty compared to our previous experiments. From the result A0=−0.11996(58), we derive the ratio of the axial-vector to the vector coupling constant λ=gA/gV=−1.2767(16)
Resumo:
In numerous intervention studies and education field trials, random assignment to treatment occurs in clusters rather than at the level of observation. This departure of random assignment of units may be due to logistics, political feasibility, or ecological validity. Data within the same cluster or grouping are often correlated. Application of traditional regression techniques, which assume independence between observations, to clustered data produce consistent parameter estimates. However such estimators are often inefficient as compared to methods which incorporate the clustered nature of the data into the estimation procedure (Neuhaus 1993).1 Multilevel models, also known as random effects or random components models, can be used to account for the clustering of data by estimating higher level, or group, as well as lower level, or individual variation. Designing a study, in which the unit of observation is nested within higher level groupings, requires the determination of sample sizes at each level. This study investigates the design and analysis of various sampling strategies for a 3-level repeated measures design on the parameter estimates when the outcome variable of interest follows a Poisson distribution. ^ Results study suggest that second order PQL estimation produces the least biased estimates in the 3-level multilevel Poisson model followed by first order PQL and then second and first order MQL. The MQL estimates of both fixed and random parameters are generally satisfactory when the level 2 and level 3 variation is less than 0.10. However, as the higher level error variance increases, the MQL estimates become increasingly biased. If convergence of the estimation algorithm is not obtained by PQL procedure and higher level error variance is large, the estimates may be significantly biased. In this case bias correction techniques such as bootstrapping should be considered as an alternative procedure. For larger sample sizes, those structures with 20 or more units sampled at levels with normally distributed random errors produced more stable estimates with less sampling variance than structures with an increased number of level 1 units. For small sample sizes, sampling fewer units at the level with Poisson variation produces less sampling variation, however this criterion is no longer important when sample sizes are large. ^ 1Neuhaus J (1993). “Estimation efficiency and Tests of Covariate Effects with Clustered Binary Data”. Biometrics , 49, 989–996^
Resumo:
The closed Tangra Yumco Basin underwent the strongest Quaternary lake-level changes so far recorded on the Tibetan Plateau. It was hitherto unknown what effect this had on local Holocene vegetation development. A 3.6-m sediment core from a recessional lake terrace at 4,700 m a.s.l., 160 m above the present lake level of Tangra Yumco, was studied to reconstruct Holocene flooding phases (sedimentology and ostracod analyses), vegetation dynamics and human influence (palynology, charcoal and coprophilous fungi analyses). Peat at the base of the profile proves lake level was below 4,700 m a.s.l. during the Pleistocene/Holocene transition. A deep-lake phase started after 11 cal ka BP, but the ostracod record indicates the level was not higher than similar to 4,720 m a.s.l. (180 m above present) and decreased gradually after the early Holocene maximum. Additional sediment ages from the basin suggest recession of Tangra Yumco from the coring site after 2.6 cal ka BP, with a shallow local lake persisting at the site until similar to 1 cal ka BP. The final peat formation indicates drier conditions thereafter. Persistence of Artemisia steppe during the Holocene lake high-stand resembles palynological records from west Tibet that indicate early Holocene aridity, in spite of high lake levels that may have resulted from meltwater input. Yet pollen assemblages indicate humidity closer to that of present potential forest areas near Lhasa, with 500-600 mm annual precipitation. Thus, the early mid-Holocene humidity was sufficient to sustain at least juniper forest, but Artemisia dominance persisted as a consequence of a combination of environmental disturbances such as (1) strong early Holocene climate fluctuations, (2) inundation of habitats suitable for forest, (3) extensive water surfaces that served as barriers to terrestrial diaspore transport from refuge areas, (4) strong erosion that denuded the non-flooded upper slopes and (5) increasing human influence since the late glacial.
Resumo:
Research on pre-service teacher internships has become a dynamic area of investigation in teacher education whose growth seems to correspond with increased activity at the institutional level over the past two decades. Introducing or expanding field experiences has been a common strategy in nearly all teacher education programs for the last twenty years, and reforming teacher education with a focus on its practical aspects still ranks near the top of education policy agendas. This article provides an introduction to the research field, addressing five basic issues: (1) precision in the definition of the construct, (2) main sources of research literature, (3) elaboration of the construct in terms of effects and mediating variables, (4) the methodological challenges of empirical research, and (5) major areas of future research. Emphasis is placed on the often ignored aspect that internships elicit both intended and unintended effects, including not only positive but also adverse side effects.
Resumo:
Land-atmosphere coupling and its impact on extreme precipitation and temperature events over North America are studied using the fifth generation of the Canadian Regional Climate Model (CRCM5). To this effect, two 30 year long simulations, spanning the 1981–2010 period, with and without land-atmosphere coupling, have been performed with CRCM5, driven by the European Centre for Medium-Range Weather Forecasts reanalysis at the boundaries. In the coupled simulation, the soil moisture interacts freely with the atmosphere at each time step, while in the uncoupled simulation, soil moisture is replaced with its climatological value computed from the coupled simulation, thus suppressing the soil moisture-atmosphere interactions. Analyses of the coupled and uncoupled simulations, for the summer period, show strong soil moisture-temperature coupling over the Great Plains, consistent with previous studies. The maxima of soil moisture-precipitation coupling is more spread out and covers the semiarid regions of the western U.S. and parts of the Great Plains. However, the strength of soil moisture-precipitation coupling is found to be generally weaker than that of soil moisture-temperature coupling. The study clearly indicates that land-atmosphere coupling increases the interannual variability of the seasonal mean daily maximum temperature in the Great Plains. Land-atmosphere coupling is found to significantly modulate selected temperature extremes such as the number of hot days, frequency, and maximum duration of hot spells over the Great Plains. Results also suggest additional hot spots, where soil moisture modulates extreme events. These hot spots are located in the southeast U.S. for the hot days/hot spells and in the semiarid regions of the western U.S. for extreme wet spells. This study thus demonstrates that climatologically wet/dry regions can become hot spots of land-atmosphere coupling when the soil moisture decreases/increases to an intermediate transitional level where evapotranspiration becomes moisture sensitive and large enough to affect the climate.
Resumo:
Software dependencies play a vital role in programme comprehension, change impact analysis and other software maintenance activities. Traditionally, these activities are supported by source code analysis; however, the source code is sometimes inaccessible or difficult to analyse, as in hybrid systems composed of source code in multiple languages using various paradigms (e.g. object-oriented programming and relational databases). Moreover, not all stakeholders have adequate knowledge to perform such analyses. For example, non-technical domain experts and consultants raise most maintenance requests; however, they cannot predict the cost and impact of the requested changes without the support of the developers. We propose a novel approach to predicting software dependencies by exploiting the coupling present in domain-level information. Our approach is independent of the software implementation; hence, it can be used to approximate architectural dependencies without access to the source code or the database. As such, it can be applied to hybrid systems with heterogeneous source code or legacy systems with missing source code. In addition, this approach is based solely on information visible and understandable to domain users; therefore, it can be efficiently used by domain experts without the support of software developers. We evaluate our approach with a case study on a large-scale enterprise system, in which we demonstrate how up to 65 of the source code dependencies and 77% of the database dependencies are predicted solely based on domain information.
Resumo:
The Quaternary Vakinankaratra volcanic field in the central Madagascar highlands consists of scoria cones, lava flows, tuff rings, and maars. These volcanic landforms are the result of processes triggered by intracontinental rifting and overlie Precambrian basement or Neogene volcanic rocks. Infrared-stimulated luminescence (IRSL) dating was applied to 13 samples taken from phreatomagmatic eruption deposits in the Antsirabe–Betafo region with the aim of constraining the chronology of the volcanic activity. Establishing such a chronology is important for evaluating volcanic hazards in this densely populated area. Stratigraphic correlations of eruption deposits and IRSL ages suggest at least five phreatomagmatic eruption events in Late Pleistocene times. In the Lake Andraikiba region, two such eruption layers can be clearly distinguished. The older one yields ages between 109 ± 15 and 90 ± 11 ka and is possibly related to an eruption at the Amboniloha volcanic complex to the north. The younger one gives ages between 58 ± 4 and 47 ± 7 ka and is clearly related to the phreatomagmatic eruption that formed Lake Andraikiba. IRSL ages of a similar eruption deposit directly overlying basement laterite in the vicinity of the Fizinana and Ampasamihaiky volcanic complexes yield coherent ages of 68 ± 7 and 65 ± 8 ka. These ages provide the upper age limit for the subsequently developed Iavoko, Antsifotra, and Fizinana scoria cones and their associated lava flows. Two phreatomagmatic deposits, identified near Lake Tritrivakely, yield the youngest IRSL ages in the region, with respective ages of 32 ± 3 and 19 ± 2 ka. The reported K-feldspar IRSL ages are the first recorded numerical ages of phreatomagmatic eruption deposits in Madagascar, and our results confirm the huge potential of this dating approach for reconstructing the volcanic activity of Late Pleistocene to Holocene volcanic provinces.
Resumo:
We present the results from a simultaneous estimation of the gravity field, Earth rotation parameters, and station coordinates from combined SLR solutions incorporating up to nine geodetic satellites: LAGEOS-1/2, Starlette, Stella, AJISAI, Beacon-C, Lares, Blits and LARES. These solutions cover all three pillars of satellite geodesy and ensure full consistency between the Earth rotation parameters, gravity field coefficients, and geometry-related parameters. We address benefits emerging from such an approach and discuss particular aspects and limitations of the gravity field recovery using SLR data. The current accuracy of SLR-derived polar motion, by the means of WRMS w.r.t. IERS-08-C04 series, is at a level of 118-149 μas, which corresponds to 4 to 5 mm on the Earth’s surface. The WRMS of SLR-derived Length-of-Day, when the gravity field parameters are simultaneously estimated, is 56 μs/day, corresponding to about 26 mm on the ground, and the mean bias of SLR-derived Length-of-Day is 6.3 μs/day, corresponding to 3 mm.
Resumo:
The importance of performance expectancies for the prediction of regulation of behavior and actual performance has long been established. Building on theories from the field of social cognition, we suggest that the level of performance expectancies, as well as the certainty of the expectancy, have a joint influence on an individual’s beliefs and behavior. In two studies (one cross sectional using a sample of secondary school students and one longitudinal using a sample of university students) we found that expectancies more strongly predicted persistence, and subsequent performance, the more certain the expectancy was. This pattern was found even if prior performance was controlled, as in Study 2. The data give an indication that it may be useful to include certainty as an additional variable in expectancy models.
Resumo:
This paper presents a search for new particles in events with one lepton (electron or muon) and missing transverse momentum using 20.3 fb−1 of proton-proton collision data at TeX = 8 TeV recorded by the ATLAS experiment at the Large Hadron Collider. No significant excess beyond Standard Model expectations is observed. A W ′ with Sequential Standard Model couplings is excluded at the 95% confidence level for masses up to 3.24 TeV. Excited chiral bosons (W *) with equivalent coupling strengths are excluded for masses up to 3.21 TeV. In the framework of an effective field theory limits are also set on the dark matter-nucleon scattering cross-section as well as the mass scale M * of the unknown mediating interaction for dark matter pair production in association with a leptonically decaying W.
Resumo:
A search is performed for flavour-changing neutral currents in the decay of a top quark to an up-type (c, u) quark and a Higgs boson, where the Higgs boson decays to two photons. The proton-proton collision data set used corresponds to 4.7 fb−1 at √s = 7TeV and 20.3 fb−1 at √s = 8TeV collected by the ATLAS experiment at the LHC. Top quark pair events are searched for in which one top quark decays to qH and the other decays to bW. Both the hadronic and the leptonic decay modes of the W boson are used. No significant signal is observed and an upper limit is set on the t → qH branching ratio of 0.79% at the 95% confidence level. The corresponding limit on the tqH coupling combination qλ2t cH + λ2t uH is 0.17.