949 resultados para transition metal diatomic


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract Title of Document: Diversity in Catalytic Reactions of Propargylic Diazoesters Huang Qiu, Doctor of Philosophy, 2016 Directed By: Professor Michael P. Doyle, Department of Chemistry and Biochemistry Propargylic aryldiazoesters, which possess multiple reactive functional groups in a single molecule, were expected to undergo divergent reaction pathways as a function of catalysts. A variety of transition metal complexes including rhodium(II), palladium(II), silver(I), mercury(II), copper(I and II), and cationic gold (I) complexes have been examined to be effective in the catalytic domino reactions of propargylic aryldiazoesters. An unexpected Lewis acid catalyzed pathway was also discovered by using FeCl3 as the catalyst. Under the catalysis of selected gold catalysts, propargylic aryldiazoesters exist in equilibrium with 1-aryl-1,2-dien-1-yl diazoacetate allenes that are rapidly formed at room temperature through 1,3-acyloxy migration. The newly formed allenes further undergo a metal-free rearrangement in which the terminal nitrogen of the diazo functional group adds to the central carbon of the allene initiating a sequence of bond forming reactions resulting in the production of 1,5-dihydro-4H-pyrazol-4-ones in good yields. These 1,5-dihydro-4H-pyrazol-4-ones undergo intramolecular 1,3-acyl migration to form an equilibrium mixture or quantitatively transfer the acyl group to an external nucleophile with formation of 4-hydroxypyrazoles. In the presence of a pyridine-N-oxide, both E- and Z-1,3-dienyl aryldiazoacetates are formed in high combined yields by Au(I)-catalyzed rearrangement of propargyl arylyldiazoacetates at short reaction times. Under thermal reactions the E-isomers form the products from intramolecular [4+2]-cycloaddition with H‡298 = 15.6 kcal/mol and S‡298= -27.3 cal/ (mol•degree). The Z-isomer is inert to [4+2]-cycloaddition under these conditions. The Hammett relationships from aryl-substituted diazo esters ( = +0.89) and aryl-substituted dienes ( = -1.65) are consistent with the dipolar nature of this transformation. An unexpected reaction for the synthesis of seven-membered conjugated 1,4-diketones from propargylic diazoesters with unsaturated imines was disclosed. To undergo this process vinyl gold carbene intermediates generated by 1,2-acyloxy migration of propargylic aryldiazoesters undergo a formal [4+3]-cycloaddition, and the resulting aryldiazoesters tethered dihydroazepines undergo an intricate metal-free process to form observed seven-membered conjugated 1,4-diketones with moderate to high yields.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ionic oxides with ABO3 structure, where A represents a rare earth element or an alkaline metal and B is a transition metal from group VIII of the periodic table are potential catalysts for oxidation and good candidates for steam reforming reaction. Different methods have been considered for the synthesis of the oxide materials with perovskite structure to produce a high homogeneous material with low amount of impurities and low calcination temperatures. In the current work, oxides with the LaNiO3 formula had been synthesized using the method of the polymeric precursors. The thermal treatment of the materials took place at 300 ºC for 2h. The material supported in alumina and/or zirconia was calcined at 800 ºC temperature for 4h. The samples had been characterized by the following techniques: thermogravimetry; infrared spectroscopy; X-ray diffraction; specific surface area; distribution of particle size; scanning electron microscopy and thermo-programmed reduction. The steam reforming reaction was carried out in a pilot plant using reducing atmosphere in the reactor with a mixture of 10% H2-Argon, a mass about 5g of catalyst, flowing at 50 mL.min-1. The temperature range used was 50 - 1000 oC with a heating rate of 10 oC.min-1. A thermal conductivity detector was used to analyze the gas after the water trapping, in order to permit to quantify the consumption of hydrogen for the lanthanum nickelates (LaNiO3). The results showed that lanthanum nickelate were more efficient when supported in alumina than when supported in zirconia. It was observed that the methane conversion was approximately 100% and the selectivity to hydrogen was about 70%. In all cases were verified low selectivity to CO and CO2

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Here we present oxygen-nonstoichiometric transition metal oxides as highly prominent candidates to catalyze the industrially important oxidation reactions of hydrocarbons when hydrogen peroxide is employed as an environmentally benign oxidant. The proof-of-concept data are revealed for the complex cobalt oxide, YBaCo4O7+δ (0 < δ < 1.5), in the oxidation process of cyclohexene. In the 2-h reaction experiments YBaCo4O7+δ was found to be significantly more active (>60 % conversion) than the commercial TiO2 catalyst (<20 %) even though its surface area was less than one tenth of that of TiO2. In the 7-h experiments with YBaCo4O7+δ, 100 % conversion of cyclohexene was achieved. Immersion calorimetry measurements showed that the high catalytic activity may be ascribed to the exceptional ability of YBaCo4O7+δ to dissociate H2O2 and release active oxygen to the oxidation reaction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A detailed study on the preparation of bimetallic PtSn/C catalysts using surface-controlled synthesis methods, and on their catalytic performance in the glycerol steam reforming reaction has been carried out. In order to obtain these well-defined bimetallic phases, techniques derived from Surface Organometallic Chemistry on Metals (SOMC/M) were used. The preparation process involved the reaction between an organometallic compound ((C4H9)4Sn) and a supported transition metal (Pt) in a H2 atmosphere. Catalysts with Sn/Pt atomic ratios of 0.2, 0.3, 0.5, and 0.7 were obtained, and characterized using several techniques: ICP, H2 chemisorption, TEM and XPS. These systems were tested in the glycerol steam reforming varying the reaction conditions (glycerol concentration and reaction temperature). The best performance was observed for the catalysts with the lowest tin contents (PtSn0.2/C and PtSn0.3/C). It was observed that the presence of tin increased the catalysts’ stability when working under more severe reaction conditions.