989 resultados para transferrin saturation
Resumo:
Fine particles of barium ferrite (BaFe12O19) belonging to the M-type hexagonal ferrites were prepared by the conventional ceramic techniques. They were incorporated into a nitrile rubber matrix according to a specific recipe for various loadings to produce rubber ferrite composites (RFC). The percolation threshold is not reached for a maximum loading of 130 phr (parts per hundred rubber). Here in this paper, the magnetic properties and processability of the nitrile rubber based RFCs containing barium ferrite (BaF) and HAF carbon black is reported. The magnetic properties of the ceramic ferrite and these rubber ferrite composites were evaluated and it was found that the coercivity values of RFCs were less than that of the ceramic BaF, but remained constant with the loading of both the ferrite filler and carbon black. However, other properties like saturation magnetization and magnetic remanence increased with the loading of ferrite filler.
Resumo:
Acicular FeC~O4-2H20 was precipitated from glycerol and starch media. Thermal decomposition of this oxalate in dry and moist nitrogen yielded primarily FeO and Fe 3Oa respectively. Characterization was attempted through DTA, TG, x-ray diffraction, TEM and magnetization studies. It was found that the oxalate can be completely decomposed to FeaO~ in moist nitrogen (PH~o ,"-" 35 torr) at 775 K and then oxidised by dry air to acicular "/-Fe~Oa at 575 K. The resulting material has saturation magnetization (,-,., 70 emu/g), coercive field (N300 Oe) and squareness ratio ( ,~, 0-60-0-65), which values art comparable with those of the commercial samples
Resumo:
The present work derives motivation from the so called surface/interfacial magnetism in core shell structures and commercial samples of Fe3O4 and c Fe2O3 with sizes ranging from 20 to 30 nm were coated with polyaniline using plasma polymerization and studied. The High Resolution Transmission Electron Microscopy images indicate a core shell structure after polyaniline coating and exhibited an increase in saturation magnetization by 2 emu/g. For confirmation, plasma polymerization was performed on maghemite nanoparticles which also exhibited an increase in saturation magnetization. This enhanced magnetization is rather surprising and the reason is found to be an interfacial phenomenon resulting from a contact potential.
Resumo:
The results of the investigation of the magnetic and structural properties of the alloy system Fe0.75–xSi0.25Sbx, where x = 0, 0.05, 0.1, 0.15, 0.2, and 0.25 synthesized by mechanical alloying followed by heat treatment are described. The x-ray diffraction reveals that all samples crystallize in the DO3-type cubic phase structure. Substituting Fe by Sb led to a de-crease in the lattice constant and the unit cell volume. The magnetic properties are investigated by vibrating sample magnetometer and show that all the samples are ferromagnetically ordered at room temperature. The Curie temperature is found to decrease linearly from (850 ± 5) K for the parent alloy to (620 ± 5) K for the alloyith x = 0.25. The satura-tion magnetizations at room temperature and at 100 K are found to decrease with increasing the antimony concentration. The above results indicate that Sb dissolves in the cubic structure of this alloy system.
Resumo:
This thesis is divided in to 9 chapters and deals with the modification of TiO2 for various applications include photocatalysis, thermal reaction, photovoltaics and non-linear optics. Chapter 1 involves a brief introduction of the topic of study. An introduction to the applications of modified titania systems in various fields are discussed concisely. Scope and objectives of the present work are also discussed in this chapter. Chapter 2 explains the strategy adopted for the synthesis of metal, nonmetal co-doped TiO2 systems. Hydrothermal technique was employed for the preparation of the co-doped TiO2 system, where Ti[OCH(CH3)2]4, urea and metal nitrates were used as the sources for TiO2, N and metals respectively. In all the co-doped systems, urea to Ti[OCH(CH3)2]4 was taken in a 1:1 molar ratio and varied the concentration of metals. Five different co-doped catalytic systems and for each catalysts, three versions were prepared by varying the concentration of metals. A brief explanation of physico-chemical techniques used for the characterization of the material was also presented in this chapter. This includes X-ray Diffraction (XRD), Raman Spectroscopy, FTIR analysis, Thermo Gravimetric Analysis, Energy Dispersive X-ray Analysis (EDX), Scanning Electron Microscopy(SEM), UV-Visible Diffuse Reflectance Spectroscopy (UV-Vis DRS), Transmission Electron Microscopy (TEM), BET Surface Area Measurements and X-ray Photoelectron Spectroscopy (XPS). Chapter 3 contains the results and discussion of characterization techniques used for analyzing the prepared systems. Characterization is an inevitable part of materials research. Determination of physico-chemical properties of the prepared materials using suitable characterization techniques is very crucial to find its exact field of application. It is clear from the XRD pattern that photocatalytically active anatase phase dominates in the calcined samples with peaks at 2θ values around 25.4°, 38°, 48.1°, 55.2° and 62.7° corresponding to (101), (004), (200), (211) and (204) crystal planes (JCPDS 21-1272) respectively. But in the case of Pr-N-Ti sample, a new peak was observed at 2θ = 30.8° corresponding to the (121) plane of the polymorph brookite. There are no visible peaks corresponding to dopants, which may be due to their low concentration or it is an indication of the better dispersion of impurities in the TiO2. Crystallite size of the sample was calculated from Scherrer equation byusing full width at half maximum (FWHM) of the (101) peak of the anatase phase. Crystallite size of all the co-doped TiO2 was found to be lower than that of bare TiO2 which indicates that the doping of metal ions having higher ionic radius into the lattice of TiO2 causes some lattice distortion which suppress the growth of TiO2 nanoparticles. The structural identity of the prepared system obtained from XRD pattern is further confirmed by Raman spectra measurements. Anatase has six Raman active modes. Band gap of the co-doped system was calculated using Kubelka-Munk equation and that was found to be lower than pure TiO2. Stability of the prepared systems was understood from thermo gravimetric analysis. FT-IR was performed to understand the functional groups as well as to study the surface changes occurred during modification. EDX was used to determine the impurities present in the system. The EDX spectra of all the co-doped samples show signals directly related to the dopants. Spectra of all the co-doped systems contain O and Ti as the main components with low concentrations of doped elements. Morphologies of the prepared systems were obtained from SEM and TEM analysis. Average particle size of the systems was drawn from histogram data. Electronic structures of the samples were identified perfectly from XPS measurements. Chapter 4 describes the photocatalytic degradation of herbicides Atrazine and Metolachlor using metal, non-metal co-doped titania systems. The percentage of degradation was analyzed by HPLC technique. Parameters such as effect of different catalysts, effect of time, effect of catalysts amount and reusability studies were discussed. Chapter 5 deals with the photo-oxidation of some anthracene derivatives by co-doped catalytic systems. These anthracene derivatives come underthe category of polycyclic aromatic hydrocarbons (PAH). Due to the presence of stable benzene rings, most of the PAH show strong inhibition towards biological degradation and the common methods employed for their removal. According to environmental protection agency, most of the PAH are highly toxic in nature. TiO2 photochemistry has been extensively investigated as a method for the catalytic conversion of such organic compounds, highlighting the potential of thereof in the green chemistry. There are actually two methods for the removal of pollutants from the ecosystem. Complete mineralization is the one way to remove pollutants. Conversion of toxic compounds to another compound having toxicity less than the initial starting compound is the second way. Here in this chapter, we are concentrating on the second aspect. The catalysts used were Gd(1wt%)-N-Ti, Pd(1wt%)-N-Ti and Ag(1wt%)-N-Ti. Here we were very successfully converted all the PAH to anthraquinone, a compound having diverse applications in industrial as well as medical fields. Substitution of 10th position of desired PAH by phenyl ring reduces the feasibility of photo reaction and produced 9-hydroxy 9-phenyl anthrone (9H9PA) as an intermediate species. The products were separated and purified by column chromatography using 70:30 hexane/DCM mixtures as the mobile phase and the resultant products were characterized thoroughly by 1H NMR, IR spectroscopy and GCMS analysis. Chapter 6 elucidates the heterogeneous Suzuki coupling reaction by Cu/Pd bimetallic supported on TiO2. Sol-Gel followed by impregnation method was adopted for the synthesis of Cu/Pd-TiO2. The prepared system was characterized by XRD, TG-DTG, SEM, EDX, BET Surface area and XPS. The product was separated and purified by column chromatography using hexane as the mobile phase. Maximum isolated yield of biphenyl of around72% was obtained in DMF using Cu(2wt%)-Pd(4wt%)-Ti as the catalyst. In this reaction, effective solvent, base and catalyst were found to be DMF, K2CO3 and Cu(2wt%)-Pd(4wt%)-Ti respectively. Chapter 7 gives an idea about the photovoltaic (PV) applications of TiO2 based thin films. Due to energy crisis, the whole world is looking for a new sustainable energy source. Harnessing solar energy is one of the most promising ways to tackle this issue. The present dominant photovoltaic (PV) technologies are based on inorganic materials. But the high material, low power conversion efficiency and manufacturing cost limits its popularization. A lot of research has been conducted towards the development of low-cost PV technologies, of which organic photovoltaic (OPV) devices are one of the promising. Here two TiO2 thin films having different thickness were prepared by spin coating technique. The prepared films were characterized by XRD, AFM and conductivity measurements. The thickness of the films was measured by Stylus Profiler. This chapter mainly concentrated on the fabrication of an inverted hetero junction solar cell using conducting polymer MEH-PPV as photo active layer. Here TiO2 was used as the electron transport layer. Thin films of MEH-PPV were also prepared using spin coating technique. Two fullerene derivatives such as PCBM and ICBA were introduced into the device in order to improve the power conversion efficiency. Effective charge transfer between the conducting polymer and ICBA were understood from fluorescence quenching studies. The fabricated Inverted hetero junction exhibited maximum power conversion efficiency of 0.22% with ICBA as the acceptor molecule. Chapter 8 narrates the third order order nonlinear optical properties of bare and noble metal modified TiO2 thin films. Thin films were fabricatedby spray pyrolysis technique. Sol-Gel derived Ti[OCH(CH3)2]4 in CH3CH2OH/CH3COOH was used as the precursor for TiO2. The precursors used for Au, Ag and Pd were the aqueous solutions of HAuCl4, AgNO3 and Pd(NO3)2 respectively. The prepared films were characterized by XRD, SEM and EDX. The nonlinear optical properties of the prepared materials were investigated by Z-Scan technique comprising of Nd-YAG laser (532 nm,7 ns and10 Hz). The non-linear coefficients were obtained by fitting the experimental Z-Scan plot with the theoretical plots. Nonlinear absorption is a phenomenon defined as a nonlinear change (increase or decrease) in absorption with increasing of intensity. This can be mainly divided into two types: saturable absorption (SA) and reverse saturable absorption (RSA). Depending on the pump intensity and on the absorption cross- section at the excitation wavelength, most molecules show non- linear absorption. With increasing intensity, if the excited states show saturation owing to their long lifetimes, the transmission will show SA characteristics. Here absorption decreases with increase of intensity. If, however, the excited state has strong absorption compared with that of the ground state, the transmission will show RSA characteristics. Here in our work most of the materials show SA behavior and some materials exhibited RSA behavior. Both these properties purely depend on the nature of the materials and alignment of energy states within them. Both these SA and RSA have got immense applications in electronic devices. The important results obtained from various studies are presented in chapter 9.
Resumo:
Magnetism and magnetic materials have been playing a lead role in improving the quality of life. They are increasingly being used in a wide variety of applications ranging from compasses to modern technological devices. Metallic glasses occupy an important position among magnetic materials. They assume importance both from a scientific and an application point of view since they represent an amorphous form of condensed matter with significant deviation from thermodynamic equilibrium. Metallic glasses having good soft magnetic properties are widely used in tape recorder heads, cores of high-power transformers and metallic shields. Superconducting metallic glasses are being used to produce high magnetic fields and magnetic levitation effect. Upon heat treatment, they undergo structural relaxation leading to subtle rearrangements of constituent atoms. This leads to densification of amorphous phase and subsequent nanocrystallisation. The short-range structural relaxation phenomenon gives rise to significant variations in physical, mechanical and magnetic properties. Magnetic amorphous alloys of Co-Fe exhibit excellent soft magnetic properties which make them promising candidates for applications as transformer cores, sensors, and actuators. With the advent of microminiaturization and nanotechnology, thin film forms of these alloys are sought after for soft under layers for perpendicular recording media. The thin film forms of these alloys can also be used for fabrication of magnetic micro electro mechanical systems (magnetic MEMS). In bulk, they are drawn in the form of ribbons, often by melt spinning. The main constituents of these alloys are Co, Fe, Ni, Si, Mo and B. Mo acts as the grain growth inhibitor and Si and B facilitate the amorphous nature in the alloy structure. The ferromagnetic phases such as Co-Fe and Fe-Ni in the alloy composition determine the soft magnetic properties. The grain correlation length, a measure of the grain size, often determines the soft magnetic properties of these alloys. Amorphous alloys could be restructured in to their nanocrystalline counterparts by different techniques. The structure of nanocrystalline material consists of nanosized ferromagnetic crystallites embedded in an amorphous matrix. When the amorphous phase is ferromagnetic, they facilitate exchange coupling between nanocrystallites. This exchange coupling results in the vanishing of magnetocrystalline anisotropy which improves the soft magnetic properties. From a fundamental perspective, exchange correlation length and grain size are the deciding factors that determine the magnetic properties of these nanocrystalline materials. In thin films, surfaces and interfaces predominantly decides the bulk property and hence tailoring the surface roughness and morphology of the film could result in modified magnetic properties. Surface modifications can be achieved by thermal annealing at various temperatures. Ion irradiation is an alternative tool to modify the surface/structural properties. The surface evolution of a thin film under swift heavy ion (SHI) irradiation is an outcome of different competing mechanism. It could be sputtering induced by SHI followed by surface roughening process and the material transport induced smoothening process. The impingement of ions with different fluence on the alloy is bound to produce systematic microstructural changes and this could effectively be used for tailoring magnetic parameters namely coercivity, saturation magnetization, magnetic permeability and remanence of these materials. Swift heavy ion irradiation is a novel and an ingenious tool for surface modification which eventually will lead to changes in the bulk as well as surface magnetic property. SHI has been widely used as a method for the creation of latent tracks in thin films. The bombardment of SHI modifies the surfaces or interfaces or creates defects, which induces strain in the film. These changes will have profound influence on the magnetic anisotropy and the magnetisation of the specimen. Thus inducing structural and morphological changes by thermal annealing and swift heavy ion irradiation, which in turn induce changes in the magnetic properties of these alloys, is one of the motivation of this study. Multiferroic and magneto-electrics is a class of functional materials with wide application potential and are of great interest to material scientists and engineers. Magnetoelectric materials combine both magnetic as well as ferroelectric properties in a single specimen. The dielectric properties of such materials can be controlled by the application of an external magnetic field and the magnetic properties by an electric field. Composites with magnetic and piezo/ferroelectric individual phases are found to have strong magnetoelectric (ME) response at room temperature and hence are preferred to single phasic multiferroic materials. Currently research in this class of materials is towards optimization of the ME coupling by tailoring the piezoelectric and magnetostrictive properties of the two individual components of ME composites. The magnetoelectric coupling constant (MECC) (_ ME) is the parameter that decides the extent of interdependence of magnetic and electric response of the composite structure. Extensive investigates have been carried out in bulk composites possessing on giant ME coupling. These materials are fabricated by either gluing the individual components to each other or mixing the magnetic material to a piezoelectric matrix. The most extensively investigated material combinations are Lead Zirconate Titanate (PZT) or Lead Magnesium Niobate-Lead Titanate (PMNPT) as the piezoelectric, and Terfenol-D as the magnetostrictive phase and the coupling is measured in different configurations like transverse, longitudinal and inplane longitudinal. Fabrication of a lead free multiferroic composite with a strong ME response is the need of the hour from a device application point of view. The multilayer structure is expected to be far superior to bulk composites in terms of ME coupling since the piezoelectric (PE) layer can easily be poled electrically to enhance the piezoelectricity and hence the ME effect. The giant magnetostriction reported in the Co-Fe thin films makes it an ideal candidate for the ferromagnetic component and BaTiO3 which is a well known ferroelectric material with improved piezoelectric properties as the ferroelectric component. The multilayer structure of BaTiO3- CoFe- BaTiO3 is an ideal system to understand the underlying fundamental physics behind the ME coupling mechanism. Giant magnetoelectric coupling coefficient is anticipated for these multilayer structures of BaTiO3-CoFe-BaTiO3. This makes it an ideal candidate for cantilever applications in magnetic MEMS/NEMS devices. SrTiO3 is an incipient ferroelectric material which is paraelectric up to 0K in its pure unstressed form. Recently few studies showed that ferroelectricity can be induced by application of stress or by chemical / isotopic substitution. The search for room temperature magnetoelectric coupling in SrTiO3-CoFe-SrTiO3 multilayer structures is of fundamental interest. Yet another motivation of the present work is to fabricate multilayer structures consisting of CoFe/ BaTiO3 and CoFe/ SrTiO3 for possible giant ME coupling coefficient (MECC) values. These are lead free and hence promising candidates for MEMS applications. The elucidation of mechanism for the giant MECC also will be the part of the objective of this investigation.
Resumo:
Salient pole brushless alternators coupled to IC engines are extensively used as stand-by power supply units for meeting in- dustrial power demands. Design of such generators demands high power to weight ratio, high e ciency and low cost per KVA out- put. Moreover, the performance characteristics of such machines like voltage regulation and short circuit ratio (SCR) are critical when these machines are put into parallel operation and alterna- tors for critical applications like defence and aerospace demand very low harmonic content in the output voltage. While designing such alternators, accurate prediction of machine characteristics, including total harmonic distortion (THD) is essential to mini- mize development cost and time. Total harmonic distortion in the output voltage of alternators should be as low as possible especially when powering very sophis- ticated and critical applications. The output voltage waveform of a practical AC generator is replica of the space distribution of the ux density in the air gap and several factors such as shape of the rotor pole face, core saturation, slotting and style of coil disposition make the realization of a sinusoidal air gap ux wave impossible. These ux harmonics introduce undesirable e ects on the alternator performance like high neutral current due to triplen harmonics, voltage distortion, noise, vibration, excessive heating and also extra losses resulting in poor e ciency, which in turn necessitate de-rating of the machine especially when connected to non-linear loads. As an important control unit of brushless alternator, the excitation system and its dynamic performance has a direct impact on alternator's stability and reliability. The thesis explores design and implementation of an excitation i system utilizing third harmonic ux in the air gap of brushless al- ternators, using an additional auxiliary winding, wound for 1=3rd pole pitch, embedded into the stator slots and electrically iso- lated from the main winding. In the third harmonic excitation system, the combined e ect of two auxiliary windings, one with 2=3rd pitch and another third harmonic winding with 1=3rd pitch, are used to ensure good voltage regulation without an electronic automatic voltage regulator (AVR) and also reduces the total harmonic content in the output voltage, cost e ectively. The design of the third harmonic winding by analytic methods demands accurate calculation of third harmonic ux density in the air gap of the machine. However, precise estimation of the amplitude of third harmonic ux in the air gap of a machine by conventional design procedures is di cult due to complex geome- try of the machine and non-linear characteristics of the magnetic materials. As such, prediction of the eld parameters by conven- tional design methods is unreliable and hence virtual prototyping of the machine is done to enable accurate design of the third har- monic excitation system. In the design and development cycle of electrical machines, it is recognized that the use of analytical and experimental methods followed by expensive and in exible prototyping is time consum- ing and no longer cost e ective. Due to advancements in com- putational capabilities over recent years, nite element method (FEM) based virtual prototyping has become an attractive al- ternative to well established semi-analytical and empirical design methods as well as to the still popular trial and error approach followed by the costly and time consuming prototyping. Hence, by virtually prototyping the alternator using FEM, the important performance characteristics of the machine are predicted. Design of third harmonic excitation system is done with the help of results obtained from virtual prototype of the machine. Third harmonic excitation (THE) system is implemented in a 45 KVA ii experimental machine and experiments are conducted to validate the simulation results. Simulation and experimental results show that by utilizing third harmonic ux in the air gap of the ma- chine for excitation purposes during loaded conditions, triplen harmonic content in the output phase voltage is signi cantly re- duced. The prototype machine with third harmonic excitation system designed and developed based on FEM analysis proved to be economical due to its simplicity and has the added advan- tage of reduced harmonics in the output phase voltage.
Resumo:
In der vorliegenden Arbeit werden die Auswirkungen von Umweltveränderungen in einem N-gesättigten Buchenwaldökosystem über Basalt (Braunerde) untersucht. Unter veränderten Umweltbedingungen sind hier vor allem Bestandesdachauflösung, immissions- oder waldbaulich bedingt, und Klimaveränderung zu verstehen, die eine Erwärmung des Oberbodens zur Folge haben. Die Änderungen der Umweltbedingungen werden in diesem Versuchsansatz durch einen waldbaulichen Eingriff simuliert, durch den eine Bestandeslücke entsteht, die in einer Erwärmung des Bodens resultieren und damit den Wasser- und Elementhaushalt insgesamt beeinflussen. Es wird deutlich, dass die in der vorliegenden Arbeit untersuchten Flächen als N-gesättigt bezeichnet werden können, da die N-Verluste aus dem System die Größe der Einträge überschreiten. In der Folge ist es zu einer Entkopplung des Stoffhaushalts und damit zu erhöhter N-Mobilisierung gekommen. Diese konnte vor allem im hydrologischen Jahr 1996 dokumentiert werden; der Überschuss-N-Output liegt auf der Auflichtungsfläche bei bis zu 50 kg N/(ha*a)! Die beobachteten hohen N-Austräge erfolgten trotz eines ebenfalls beobachteten Anwachsens des mikrobiellen Stickstoff-Pools und des Aufwachsens einer krautigen und strauchigen Vegetation auf der Auflichtungsfläche. Im Jahresgang konnten auf der Auflichtungsfläche in 0 - 30 cm Bodentiefe maximale Änderungen im Nmic-Vorrat von 130 kg N/(ha*a) beobachtet werden. Das im Frühjahr beginnende quantitative Anwachsen des mikrobiellen Stickstoff-Pools mit dem Jahresgang zeigt vor allem dessen Temperaturabhängigkeit auf. Die am Ende der Vegetationsperiode deutlich ansteigenden Austragsraten zeigen jedoch an, dass der freigesetzte Stickstoff auch von den Mikroorganismen nicht dauerhaft im System gehalten werden kann, da mit fallender Temperatur auch die Mikroorganismen absterben und der in ihrer Biomasse gespeicherte Stickstoff freigesetzt wird. Aufwachsende Vegetation auf der Auflichtungsfläche konnte einen Großteil des Netto-Stickstoff-Jahreseintrages aufnehmen. Da die "Netto-Jahres-Mineralisation" 1996 leicht über der Wurzelaufnahme liegt, verbleibt ein Rest, der nicht von der aufwachsenden krautigen Vegetation der Auflichtungsfläche aufgenommen werden kann. Ergebnis ist damit, dass die auf Lochhieben aufwachsende krautige und strauchige Vegetation eine temperaturbedingte Stickstoffmobilisierung nur teilweise kompensieren kann. Allein aufwachsende verholzende Vegetation kann Stickstoff langfristig im System binden.
Resumo:
Soil fertility constraints to crop production have been recognized widely as a major obstacle to food security and agro-ecosystem sustainability in sub-Saharan West Africa. As such, they have led to a multitude of research projects and policy debates on how best they should be overcome. Conclusions, based on long-term multi-site experiments, are lacking with respect to a regional assessment of phosphorus and nitrogen fertilizer effects, surface mulched crop residues, and legume rotations on total dry matter of cereals in this region. A mixed model time-trend analysis was used to investigate the effects of four nitrogen and phosphorus rates, annually applied crop residue dry matter at 500 and 2000 kg ha^-1, and cereal-legume rotation versus continuous cereal cropping on the total dry matter of cereals and legumes. The multi-factorial experiment was conducted over four years at eight locations, with annual rainfall ranging from 510 to 1300 mm, in Niger, Burkina Faso, and Togo. With the exception of phosphorus, treatment effects on legume growth were marginal. At most locations, except for typical Sudanian sites with very low base saturation and high rainfall, phosphorus effects on cereal total dry matter were much lower with rock phosphate than with soluble phosphorus, unless the rock phosphate was combined with an annual seed-placement of 4 kg ha^-1 phosphorus. Across all other treatments, nitrogen effects were negligible at 500 mm annual rainfall but at 900 mm, the highest nitrogen rate led to total dry matter increases of up to 77% and, at 1300 mm, to 183%. Mulch-induced increases in cereal total dry matter were larger with lower base saturation, reaching 45% on typical acid sandy Sahelian soils. Legume rotation effects tended to increase over time but were strongly species-dependent.
Resumo:
Summary: Productivity and forage quality of legume-grass swards are important factors for successful arable farming in both organic and conventional farming systems. For these objectives the botanical composition of the swards is of particular importance, especially, the content of legumes due to their ability to fix airborne nitrogen. As it can vary considerably within a field, a non-destructive detection method while doing other tasks would facilitate a more targeted sward management and could predict the nitrogen supply of the soil for the subsequent crop. This study was undertaken to explore the potential of digital image analysis (DIA) for a non destructive prediction of legume dry matter (DM) contribution of legume-grass mixtures. For this purpose an experiment was conducted in a greenhouse, comprising a sample size of 64 experimental swards such as pure swards of red clover (Trifolium pratense L.), white clover (Trifolium repens L.) and lucerne (Medicago sativa L.) as well as binary mixtures of each legume with perennial ryegrass (Lolium perenne L.). Growth stages ranged from tillering to heading and the proportion of legumes from 0 to 80 %. Based on digital sward images three steps were considered in order to estimate the legume contribution (% of DM): i) The development of a digital image analysis (DIA) procedure in order to estimate legume coverage (% of area). ii) The description of the relationship between legume coverage (% area) and legume contribution (% of DM) derived from digital analysis of legume coverage related to the green area in a digital image. iii) The estimation of the legume DM contribution with the findings of i) and ii). i) In order to evaluate the most suitable approach for the estimation of legume coverage by means of DIA different tools were tested. Morphological operators such as erode and dilate support the differentiation of objects of different shape by shrinking and dilating objects (Soille, 1999). When applied to digital images of legume-grass mixtures thin grass leaves were removed whereas rounder clover leaves were left. After this process legume leaves were identified by threshold segmentation. The segmentation of greyscale images turned out to be not applicable since the segmentation between legumes and bare soil failed. The advanced procedure comprising morphological operators and HSL colour information could determine bare soil areas in young and open swards very accurately. Also legume specific HSL thresholds allowed for precise estimations of legume coverage across a wide range from 11.8 - 72.4 %. Based on this legume specific DIA procedure estimated legume coverage showed good correlations with the measured values across the whole range of sward ages (R2 0.96, SE 4.7 %). A wide range of form parameters (i.e. size, breadth, rectangularity, and circularity of areas) was tested across all sward types, but none did improve prediction accuracy of legume coverage significantly. ii) Using measured reference data of legume coverage and contribution, in a first approach a common relationship based on all three legumes and sward ages of 35, 49 and 63 days was found with R2 0.90. This relationship was improved by a legume-specific approach of only 49- and 63-d old swards (R2 0.94, 0.96 and 0.97 for red clover, white clover, and lucerne, respectively) since differing structural attributes of the legume species influence the relationship between these two parameters. In a second approach biomass was included in the model in order to allow for different structures of swards of different ages. Hence, a model was developed, providing a close look on the relationship between legume coverage in binary legume-ryegrass communities and the legume contribution: At the same level of legume coverage, legume contribution decreased with increased total biomass. This phenomenon may be caused by more non-leguminous biomass covered by legume leaves at high levels of total biomass. Additionally, values of legume contribution and coverage were transformed to the logit-scale in order to avoid problems with heteroscedasticity and negative predictions. The resulting relationships between the measured legume contribution and the calculated legume contribution indicated a high model accuracy for all legume species (R2 0.93, 0.97, 0.98 with SE 4.81, 3.22, 3.07 % of DM for red clover, white clover, and lucerne swards, respectively). The validation of the model by using digital images collected over field grown swards with biomass ranges considering the scope of the model shows, that the model is able to predict legume contribution for most common legume-grass swards (Frame, 1992; Ledgard and Steele, 1992; Loges, 1998). iii) An advanced procedure for the determination of legume DM contribution by DIA is suggested, which comprises the inclusion of morphological operators and HSL colour information in the analysis of images and which applies an advanced function to predict legume DM contribution from legume coverage by considering total sward biomass. Low residuals between measured and calculated values of legume dry matter contribution were found for the separate legume species (R2 0.90, 0.94, 0.93 with SE 5.89, 4.31, 5.52 % of DM for red clover, white clover, and lucerne swards, respectively). The introduced DIA procedure provides a rapid and precise estimation of legume DM contribution for different legume species across a wide range of sward ages. Further research is needed in order to adapt the procedure to field scale, dealing with differing light effects and potentially higher swards. The integration of total biomass into the model for determining legume contribution does not necessarily reduce its applicability in practice as a combined estimation of total biomass and legume coverage by field spectroscopy (Biewer et al. 2009) and DIA, respectively, may allow for an accurate prediction of the legume contribution in legume-grass mixtures.
Resumo:
This thesis presents a new actuator system consisting of a micro-actuator and a macro-actuator coupled in parallel via a compliant transmission. The system is called the Parallel Coupled Micro-Macro Actuator, or PaCMMA. In this system, the micro-actuator is capable of high bandwidth force control due to its low mass and direct-drive connection to the output shaft. The compliant transmission of the macro-actuator reduces the impedance (stiffness) at the output shaft and increases the dynamic range of force. Performance improvement over single actuator systems was expected in force control, impedance control, force distortion and reduction of transient impact forces. A set of quantitative measures is proposed and the actuator system is evaluated against them: Force Control Bandwidth, Position Bandwidth, Dynamic Range, Impact Force, Impedance ("Backdriveability'"), Force Distortion and Force Performance Space. Several theoretical performance limits are derived from the saturation limits of the system. A control law is proposed and control system performance is compared to the theoretical limits. A prototype testbed was built using permanenent magnet motors and an experimental comparison was performed between this actuator concept and two single actuator systems. The following performance was observed: Force bandwidth of 56Hz, Torque Dynamic Range of 800:1, Peak Torque of 1040mNm, Minimum Torque of 1.3mNm. Peak Impact Force was reduced by an order of magnitude. Distortion at small amplitudes was reduced substantially. Backdriven impedance was reduced by 2-3 orders of magnitude. This actuator system shows promise for manipulator design as well as psychophysical tests of human performance.
Resumo:
We present an experimental study on the behavior of bubbles captured in a Taylor vortex. The gap between a rotating inner cylinder and a stationary outer cylinder is filled with a Newtonian mineral oil. Beyond a critical rotation speed (ω[subscript c]), Taylor vortices appear in this system. Small air bubbles are introduced into the gap through a needle connected to a syringe pump. These are then captured in the cores of the vortices (core bubble) and in the outflow regions along the inner cylinder (wall bubble). The flow field is measured with a two-dimensional particle imaging velocimetry (PIV) system. The motion of the bubbles is monitored by using a high speed video camera. It has been found that, if the core bubbles are all of the same size, a bubble ring forms at the center of the vortex such that bubbles are azimuthally uniformly distributed. There is a saturation number (N[subscript s]) of bubbles in the ring, such that the addition of one more bubble leads eventually to a coalescence and a subsequent complicated evolution. Ns increases with increasing rotation speed and decreasing bubble size. For bubbles of non-uniform size, small bubbles and large bubbles in nearly the same orbit can be observed to cross due to their different circulating speeds. The wall bubbles, however, do not become uniformly distributed, but instead form short bubble-chains which might eventually evolve into large bubbles. The motion of droplets and particles in a Taylor vortex was also investigated. As with bubbles, droplets and particles align into a ring structure at low rotation speeds, but the saturation number is much smaller. Moreover, at high rotation speeds, droplets and particles exhibit a characteristic periodic oscillation in the axial, radial and tangential directions due to their inertia. In addition, experiments with non-spherical particles show that they behave rather similarly. This study provides a better understanding of particulate behavior in vortex flow structures.
Resumo:
En la literatura existen descritas varias técnicas de preoxigenación aplicadas a diferentes pacientes y realizadas con diferentes flujos o fracciones inspiradas de oxigeno, sin embargo no se encuentran descripciones ni estudios realizados con respecto a este tópico en pacientes ubicados por encima de los 1000 mts sobre el nivel del mar. El objetivo del presente estudio es describir el patrón de saturación con oxigeno al 100% obteniendo fracción espirada de oxígeno (EtO2) >90% y Saturación de oxígeno (SaO2) > 99%, así como el patrón de normalización de la saturación de oxigeno con una fracción inspirada del 21% con cuatro técnicas estandarizadas de preoxigenación, en personas voluntarias sanas pertenecientes a la Fundación Cardio Infantil a 2600 metros sobre el nivel del mar. Materiales y métodos: Este es un estudio cuasiexperimental en personas adultas voluntarias sanas pertenecientes a la Fundación Cardio Infantil, los cuales son sometidos a toma de saturación de oxígeno basal y luego se les aplica preoxigenación con fracción inspirada oxigeno (FiO2) al 100% con un flujo de 10Lt/min, mediante sello de máscara facial con arnés: Simultáneamente se realiza una medición de la fracción espirada de oxígeno (ETO2) y oximetría de pulso (SaO2) cada 15 segundos con cada una de las cuatro pruebas de preoxigenación (volumen corriente por 3 minutos, 8 capacidades vitales, volumen corriente hasta ETO2 de =90% y capacidades vitales hasta ETO2 =90%) y luego medición del tiempo de normalización de la saturación respirando al oxígeno con FiO2 al 21 % hasta alcanzar nuevamente la SaO2 basal, con cada técnica. Resultados: No existe diferencia significativa en la aplicación de las técnicas de preoxigenación ni tampoco en el tiempo de normalización de la saturación de oxígeno con FiO2 al 21 % al nivel de Bogotá con las cuatro técnicas de preoxigenación aplicadas a nuestros pacientes. Conclusión: Las cuatro técnicas de preoxigenación son efectivas, sin embargo recomendamos el uso de técnicas que buscan una ETO2=90%. Por otra parte encontramos que el tiempo de recuperación de la saturación basal es de 3,9 minutos en personas voluntarias sanas a 2600 mts sobre el nivel del mar, la cual es inferior comparada con los 10 minutos que toma la normalización de la saturación de oxígeno a 0 mts sobre el nivel del mar descritos previamente en la literatura. Hace falta realizar estudios de preoxigenación y apnea en pacientes a nuestra altura (2600 mts sobre el nivel del mar) para confirmar que el tiempo de desaturación es significativamente menor que a nivel del mar. Palabras Claves: Preoxigenación, Fracción espirada de O2 (EtO2), saturación de oxígeno (SaO2).
Resumo:
Objetivos: Determinar si existe correlación entre las variables SaFiO2 y PaFiO2 de pacientes con patología respiratoria aguda en la unidad de Cuidado Intensivo Pediátrico, en la Fundación Cardioinfantil en la ciudad de Bogotá D.C. Materiales y métodos: Se analizaron las variables cuantitativas con medidas de tendencia central como la media y medidas de dispersión como la desviación estándar. Se utilizó un nivel de confiabilidad del 95% y un poder estimado 80%, para prueba de hipótesis de una proporción. Se realizó un análisis de correlación para medir la fuerza de la relación entre las variables PaO2/FiO2 y SO2/FiO2 a través del coeficiente de correlación. Resultados: Se incluyeron 12 pacientes y se tomaron un total de 65 registros de SO2/FiO2 y PaO2/FiO2 encontrando que existe relación positiva entre las variables SaO2/FIO2 y PaO2/FIO2, la cual es variable dependiendo de la fracción inspirada de oxigeno con el cual se encuentre el paciente. De acuerdo a las observaciones realizadas, la variable SaO2/FIO2 está moderadamente correlacionada (r = 0,602) con la PaO2/FIO2, cuando la FIO2 está entre 0.35 y 0.55; un grado de correlación aceptable (r = 0,319) cuando la FIO2 está entre 0.60 0.80 y 0.81 1 (r = 0,318). Conclusiones: Los métodos no invasivos en la evaluación de la oxigenación podrían ser una alternativa para el seguimiento clínico en niños con lesión pulmonar aguda o síndrome de dificultad respiratorio agudo. Se requiere de estudios analíticos que brinden una mejor evidencia científica que pueda ser extrapolable a la población infantil objeto de este estudio.
Resumo:
El objetivo de este estudio, es determinar la capacidad de la diferencia venoarterial de de pCO2, como predictor de disfunción miocárdica en pacientes pediátricos con sepsis severa y choque séptico en la Unidad de Cuidado Intensivo Pediátrico de la Fundación Cardio Infantil. El documento eviado corresponde a un informe parcial de un estudio en curso en la Fundación CardioInfantil.