954 resultados para tabu search algorithm


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The primary objective of this research project was to identify prostate cancer (PCa) -specific biomarkers from urine. This was done using a multi-faceted approach that targeted (1) the genome (DNA); (2) the transcriptome (mRNA and miRNA); and (3) the proteome. Toward this end, urine samples were collected from ten healthy individuals, eight men with PCa and twelve men with enlarged, non-cancerous prostates or with Benign Prostatic Hyperplasia (BPH). Urine samples were also collected from the same patients (PCa and BPH) as part of a two-year follow-up. Initially urinary nucleic acids and proteins were assessed both qualitatively and quantitatively for characteristics either unique or common among the groups. Subsequently macromolecules were pooled within each group and assessed for either protein composition via LC-MS/MS or microRNA (miRNA) expression by microarray. A number of potential candidates including miRNAs were identified as being deregulated in either pooled PCa or BPH with respect to the healthy control group. Candidate biomarkers were then assessed among individual samples to validate their utility in diagnosing PCa and/or differentiating PCa from BPH. A number of potential targets including deregulation of miRNAs 1825 and 484, and mRNAs for Fibronectin and Tumor Protein 53 Inducible Nuclear Protein 2 (TP53INP2) appeared to be indicative of PCa. Furthermore, deregulation of miR-498 appeared to be indicative of BPH. The sensitivities and specificities associated with using deregulation in many of these targets to subsequently predict PCa or BPH were also determined. This research project has identified a number of potential targets, detectable in urine, which merit further investigation towards the accurate identification of PCa and its discrimination from BPH. The significance of this work is amplified by the non-invasive nature of the sample source from which these candidates were derived, urine. Many cancer biomarker discovery studies have tended to focus primarily on blood (plasma or serum) and/or tissue samples. This is one of the first PCa biomarker studies to focus exclusively on urine as a sample source.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Complex networks have recently attracted a significant amount of research attention due to their ability to model real world phenomena. One important problem often encountered is to limit diffusive processes spread over the network, for example mitigating pandemic disease or computer virus spread. A number of problem formulations have been proposed that aim to solve such problems based on desired network characteristics, such as maintaining the largest network component after node removal. The recently formulated critical node detection problem aims to remove a small subset of vertices from the network such that the residual network has minimum pairwise connectivity. Unfortunately, the problem is NP-hard and also the number of constraints is cubic in number of vertices, making very large scale problems impossible to solve with traditional mathematical programming techniques. Even many approximation algorithm strategies such as dynamic programming, evolutionary algorithms, etc. all are unusable for networks that contain thousands to millions of vertices. A computationally efficient and simple approach is required in such circumstances, but none currently exist. In this thesis, such an algorithm is proposed. The methodology is based on a depth-first search traversal of the network, and a specially designed ranking function that considers information local to each vertex. Due to the variety of network structures, a number of characteristics must be taken into consideration and combined into a single rank that measures the utility of removing each vertex. Since removing a vertex in sequential fashion impacts the network structure, an efficient post-processing algorithm is also proposed to quickly re-rank vertices. Experiments on a range of common complex network models with varying number of vertices are considered, in addition to real world networks. The proposed algorithm, DFSH, is shown to be highly competitive and often outperforms existing strategies such as Google PageRank for minimizing pairwise connectivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA assembly is among the most fundamental and difficult problems in bioinformatics. Near optimal assembly solutions are available for bacterial and small genomes, however assembling large and complex genomes especially the human genome using Next-Generation-Sequencing (NGS) technologies is shown to be very difficult because of the highly repetitive and complex nature of the human genome, short read lengths, uneven data coverage and tools that are not specifically built for human genomes. Moreover, many algorithms are not even scalable to human genome datasets containing hundreds of millions of short reads. The DNA assembly problem is usually divided into several subproblems including DNA data error detection and correction, contig creation, scaffolding and contigs orientation; each can be seen as a distinct research area. This thesis specifically focuses on creating contigs from the short reads and combining them with outputs from other tools in order to obtain better results. Three different assemblers including SOAPdenovo [Li09], Velvet [ZB08] and Meraculous [CHS+11] are selected for comparative purposes in this thesis. Obtained results show that this thesis’ work produces comparable results to other assemblers and combining our contigs to outputs from other tools, produces the best results outperforming all other investigated assemblers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ordered gene problems are a very common classification of optimization problems. Because of their popularity countless algorithms have been developed in an attempt to find high quality solutions to the problems. It is also common to see many different types of problems reduced to ordered gene style problems as there are many popular heuristics and metaheuristics for them due to their popularity. Multiple ordered gene problems are studied, namely, the travelling salesman problem, bin packing problem, and graph colouring problem. In addition, two bioinformatics problems not traditionally seen as ordered gene problems are studied: DNA error correction and DNA fragment assembly. These problems are studied with multiple variations and combinations of heuristics and metaheuristics with two distinct types or representations. The majority of the algorithms are built around the Recentering- Restarting Genetic Algorithm. The algorithm variations were successful on all problems studied, and particularly for the two bioinformatics problems. For DNA Error Correction multiple cases were found with 100% of the codes being corrected. The algorithm variations were also able to beat all other state-of-the-art DNA Fragment Assemblers on 13 out of 16 benchmark problem instances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Elementary teachers are expected to prepare students to work efficiently with others, solve complex problems and self-regulate their own learning. Considering the importance of a solid educational foundation in the early years, students would benefit if elementary teachers engaged in scholarly teaching. The purpose of this study was to investigate Boyer’s (1990) four dimensions of scholarship, application, integration, teaching and discovery, to better understand if there is scholarly teaching in elementary education. Four professional teaching documents were analyzed using a hermeneutic orientation. A deductive analysis suggests that we do have scholarly teaching in elementary education, with strong evidence that elementary teachers are scholars of application and integration. An inductive analysis of latent and manifest content suggests that underlying humanistic values run deeply through elementary education driving current curricular, instructional and pedagogical practices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the relationship between genetic diseases and the genes associated with them is an important problem regarding human health. The vast amount of data created from a large number of high-throughput experiments performed in the last few years has resulted in an unprecedented growth in computational methods to tackle the disease gene association problem. Nowadays, it is clear that a genetic disease is not a consequence of a defect in a single gene. Instead, the disease phenotype is a reflection of various genetic components interacting in a complex network. In fact, genetic diseases, like any other phenotype, occur as a result of various genes working in sync with each other in a single or several biological module(s). Using a genetic algorithm, our method tries to evolve communities containing the set of potential disease genes likely to be involved in a given genetic disease. Having a set of known disease genes, we first obtain a protein-protein interaction (PPI) network containing all the known disease genes. All the other genes inside the procured PPI network are then considered as candidate disease genes as they lie in the vicinity of the known disease genes in the network. Our method attempts to find communities of potential disease genes strongly working with one another and with the set of known disease genes. As a proof of concept, we tested our approach on 16 breast cancer genes and 15 Parkinson's Disease genes. We obtained comparable or better results than CIPHER, ENDEAVOUR and GPEC, three of the most reliable and frequently used disease-gene ranking frameworks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Population-based metaheuristics, such as particle swarm optimization (PSO), have been employed to solve many real-world optimization problems. Although it is of- ten sufficient to find a single solution to these problems, there does exist those cases where identifying multiple, diverse solutions can be beneficial or even required. Some of these problems are further complicated by a change in their objective function over time. This type of optimization is referred to as dynamic, multi-modal optimization. Algorithms which exploit multiple optima in a search space are identified as niching algorithms. Although numerous dynamic, niching algorithms have been developed, their performance is often measured solely on their ability to find a single, global optimum. Furthermore, the comparisons often use synthetic benchmarks whose landscape characteristics are generally limited and unknown. This thesis provides a landscape analysis of the dynamic benchmark functions commonly developed for multi-modal optimization. The benchmark analysis results reveal that the mechanisms responsible for dynamism in the current dynamic bench- marks do not significantly affect landscape features, thus suggesting a lack of representation for problems whose landscape features vary over time. This analysis is used in a comparison of current niching algorithms to identify the effects that specific landscape features have on niching performance. Two performance metrics are proposed to measure both the scalability and accuracy of the niching algorithms. The algorithm comparison results demonstrate the algorithms best suited for a variety of dynamic environments. This comparison also examines each of the algorithms in terms of their niching behaviours and analyzing the range and trade-off between scalability and accuracy when tuning the algorithms respective parameters. These results contribute to the understanding of current niching techniques as well as the problem features that ultimately dictate their success.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis we are going to analyze the dictionary graphs and some other kinds of graphs using the PagerRank algorithm. We calculated the correlation between the degree and PageRank of all nodes for a graph obtained from Merriam-Webster dictionary, a French dictionary and WordNet hypernym and synonym dictionaries. Our conclusion was that PageRank can be a good tool to compare the quality of dictionaries. We studied some artificial social and random graphs. We found that when we omitted some random nodes from each of the graphs, we have not noticed any significant changes in the ranking of the nodes according to their PageRank. We also discovered that some social graphs selected for our study were less resistant to the changes of PageRank.