991 resultados para structural var
Resumo:
Symbolic dynamics is a branch of mathematics that studies the structure of infinite sequences of symbols, or in the multidimensional case, infinite grids of symbols. Classes of such sequences and grids defined by collections of forbidden patterns are called subshifts, and subshifts of finite type are defined by finitely many forbidden patterns. The simplest examples of multidimensional subshifts are sets of Wang tilings, infinite arrangements of square tiles with colored edges, where adjacent edges must have the same color. Multidimensional symbolic dynamics has strong connections to computability theory, since most of the basic properties of subshifts cannot be recognized by computer programs, but are instead characterized by some higher-level notion of computability. This dissertation focuses on the structure of multidimensional subshifts, and the ways in which it relates to their computational properties. In the first part, we study the subpattern posets and Cantor-Bendixson ranks of countable subshifts of finite type, which can be seen as measures of their structural complexity. We show, by explicitly constructing subshifts with the desired properties, that both notions are essentially restricted only by computability conditions. In the second part of the dissertation, we study different methods of defining (classes of ) multidimensional subshifts, and how they relate to each other and existing methods. We present definitions that use monadic second-order logic, a more restricted kind of logical quantification called quantifier extension, and multi-headed finite state machines. Two of the definitions give rise to hierarchies of subshift classes, which are a priori infinite, but which we show to collapse into finitely many levels. The quantifier extension provides insight to the somewhat mysterious class of multidimensional sofic subshifts, since we prove a characterization for the class of subshifts that can extend a sofic subshift into a nonsofic one.
Resumo:
The pulp and paper industry is currently facing broad structural changes due to global shifts in demand and supply. These changes have significant impacts on national economies worldwide. Planted forests (especially eucalyptus) and recovered paper have quickly increased their importance as raw material for paper and paperboard production. Although advances in information and communication technologies could reduce the demand for communication papers, and the growth of paper consumption has indeed flattened in developed economies, particularly in North America and Western Europe, the consumption is increasing on a global scale. Moreover, the focal point of production and consumption is moving from the Western world to the rapidly growing markets of Southeast Asia. This study analyzes how the so-called megatrends (globalization, technological development, and increasing environmental awareness) affect the pulp and paper industry’s external environment, and seeks reliable ways to incorporate the impact of the megatrends on the models concerning the demand, trade, and use of paper and pulp. The study expands current research in several directions and points of view, for example, by applying and incorporating several quantitative methods and different models. As a result, the thesis makes a significant contribution to better understand and measure the impacts of structural changes on the pulp and paper industry. It also provides some managerial and policy implications.
Resumo:
Las papayas obtenidas en el raleo (papayas menos desarrolladas entresacadas de los árboles para beneficiar el crecimiento de las otras) generalmente se descartan. Alternativamente, estas papayas pueden secarse por un proceso de deshidratación osmótica y secado térmico convencional para usarlas como snacks o como ingrediente para otros productos. Se comparó la cinética de transferencia de masa en la deshidratación osmótica de papayas de raleo frente a papayas desarrolladas con diferente grado de madurez, considerando el efecto de la geometría de la muestra y de la presión del proceso. La deshidratación osmótica se efectuó en una solución agitada de sacarosa a 50 °Brix, a 25 °C. Se consideraron tres niveles de madurez: raleo, verde y pintona, tres geometrías: lámina, cilindro y anillo y dos niveles de presión: atmosférica y vacío. Se estudiaron como variables cinéticas la variación de peso (WR), pérdida de agua (WL) y ganancia de sólidos (SG) entre 10 y 180 min. La madurez tuvo efecto significativo sobre las tres respuestas de la cinética a 30 min y sobre SG a 180 min; la geometría tuvo efecto sobre WR y SG a 30 min y sobre los tres parámetros cinéticos a 180 min y la presión solamente tuvo efecto sobre WL y SG a 30 min. La mayor pérdida de agua (65%) se obtuvo a 30 min para la combinación raleo/cilindro/vacío; mientras que la mayor ganancia de sólidos fue 31% para el tratamiento verde/lámina/vacío a 180 min.
Resumo:
Os objetivos do trabalho foram isolar, purificar e estudar algumas propriedades da fração globulina majoritária de tremoço-doce, var. Multolupa; assim como avaliar as características de digestibilidade da farinha e frações isoladas. As frações protéicas foram separadas por fracionamento diferencial com uso de diferentes solventes. A globulina majoritária de tremoço-doce foi isolada, purificada por cromatografia em Q-Sepharose, revelando um único pico de proteína. Apresentou um peso molecular de 162,5 ± 10,0 kDa, determinado por cromatografia em Sephacryl S-300, e subunidades entre 20-70 kDa em PAGE-SDS. A solubilidade em função do pH e concentrações de NaCl revelaram curva típica dessa fração. A digestibilidade da proteína da farinha e das frações albumina, globulina e glutelina foi avaliada por experimentos in vitro e in vivo e se revelou alta para a fração globulina, seguida pela glutelina, albumina e farinha. A digestibilidade in vivo da fração globulina, tanto aparente quanto verdadeira, não diferiu significativamente daquela determinada para a caseína. Apesar da alta digestibilidade da fração majoritária e frações protéicas, a utilização como única fonte de proteína nas dietas revelou valores baixos de RPLR (razão protéica líquida relativa), indicando ser insuficiente para sustentar o crescimento dos animais, comparativamente à caseína.
Resumo:
Laser beam welding (LBW) is applicable for a wide range of industrial sectors and has a history of fifty years. However, it is considered an unusual method with applications typically limited to welding of thin sheet metal. With a new generation of high power lasers there has been a renewed interest in thick section LBW (also known as keyhole laser welding). There was a growing body of publications during 2001-2011 that indicates an increasing interest in laser welding for many industrial applications, and in last ten years, an increasing number of studies have examined the ways to increase the efficiency of the process. Expanding the thickness range and efficiency of LBW makes the process a possibility for industrial applications dealing with thick metal welding: shipbuilding, offshore structures, pipelines, power plants and other industries. The advantages provided by LBW, such as high process speed, high productivity, and low heat input, may revolutionize these industries and significantly reduce the process costs. The research to date has focused on either increasing the efficiency via optimizing process parameters, or on the process fundamentals, rather than on process and workpiece modifications. The argument of this thesis is that the efficiency of the laser beam process can be increased in a straightforward way in the workshop conditions. Throughout this dissertation, the term “efficiency” is used to refer to welding process efficiency, specifically, an increase in efficiency refers an increase in weld’s penetration depth without increasing laser power level or decreasing welding speed. These methods are: modifications of the workpiece – edge surface roughness and air gap between the joining plates; modification of the ambient conditions – local reduction of the pressure in the welding zone; modification of the welding process – preheating of the welding zone. Approaches to improve the efficiency are analyzed and compared both separately and combined. These experimentally proven methods confirm previous findings and contribute additional evidence which expand the opportunities for laser beam welding applications. The focus of this research was primarily on the effects of edge surface roughness preparation and pre-set air gap between the plates on weld quality and penetration depth. To date, there has been no reliable evidence that such modifications of the workpiece give a positive effect on the welding efficiency. Other methods were tested in combination with the two methods mentioned above. The most promising - combining with reduced pressure method - resulted in at least 100% increase in efficiency. The results of this thesis support the idea that joining those methods in one modified process will provide the modern engineering with a sufficient tool for many novel applications with potential benefits to a range of industries.
Resumo:
Obesity is one of the key challenges to health care system worldwide and its prevalence is estimated to rise to pandemic proportions. Numerous adverse health effects follow with increasing body weight, including increased risk of hypertension, diabetes, hypercholesterolemia, musculoskeletal pain and cancer. Current evidence suggests that obesity is associated with altered cerebral reward circuit functioning and decreased inhibitory control over appetitive food cues. Furthermore, obesity causes adverse shifts in metabolism and loss of structural integrity within the brain. Prior cross-sectional studies do not allow delineating which of these cerebral changes are recoverable after weight loss. We compared morbidly obese subjects with healthy controls to unravel brain changes associated with obesity. Bariatric surgery was used as an intervention to study which cerebral changes are recoverable after weight loss. In Study I we employed functional magnetic resonance imaging (fMRI) to detect the brain basis of volitional appetite control and its alterations in obesity. In Studies II-III we used diffusion tensor imaging (DTI) and voxel-based morphometry (VBM) to quantify the effects of obesity and the effects of weight loss on structural integrity of the brain. In study IV we used positron emission tomography (PET) with [18F]-FDG in fasting state and during euglycemic hyperinsulinemia to quantify effects of obesity and weight loss on brain glucose uptake. The fMRI experiment revealed that a fronto-parietal network is involved in volitional appetite control. Obese subjects had lower medial frontal and dorsal striatal brain activity during cognitive appetite control and increased functional connectivity within the appetite control circuit. Obese subjects had initially lower grey matter and white matter densities than healthy controls in VBM analysis and loss of integrity in white matter tracts as measured by DTI. They also had initially elevated glucose metabolism under insulin stimulation but not in fasting state. After the weight loss following bariatric surgery, obese individuals’ brain volumes recovered and the insulin-induced increase in glucose metabolism was attenuated. In conclusion, obesity is associated with altered brain function, coupled with loss of structural integrity and elevated glucose metabolism, which are likely signs of adverse health effects to the brain. These changes are reversed by weight loss after bariatric surgery, implicating that weight loss has a causal role on these adverse cerebral changes. Altogether these findings suggest that weight loss also promotes brain health.Key words: brain, obesity, bariatric surgery, appetite control, structural magnetic resonance
Resumo:
Este trabalho teve como objetivo determinar a atividade antimicrobiana e antioxidante do óleo essencial de Ho-Sho. O principal componente do óleo essencial obtido a partir de folhas da planta submetidas ao processo de hidrodestilação foi o linalol (80 a 95% m/m). O óleo essencial mostrou atividade antimicrobiana para todos os microrganismos testados, com exceção de Pseudomonas aeruginosa. A maior atividade antimicrobiana do óleo essencial sobre as bactérias testadas foi observada sobre Xanthomonas campestris (33,0 mm) e a menor sobre Yersinia enterocolitica (10,5 mm). Para a concentração inibitória mínima (CIM), observou-se que todos os microrganismos apresentaram-se susceptíveis ao óleo essencial de Ho-Sho. A variação das CIM para as bactérias Gram-positivas foi de 1,00 mg.mL-1 (Streptococcus mutans) a 1,75 mg.mL-1 (Staphylococcus epidermidis). Já a variação das CIM para as bactérias Gram-negativas foi de 0,625 mg.mL-1 (Citrobacter freundii) a 2,50 mg.mL-1 (Shigella flexneri). Os resultados obtidos na determinação da atividade antioxidante do óleo essencial demonstram que o percentual antioxidante aumenta proporcionalmente à concentração de óleo essencial adicionado, atingindo o valor máximo de 97,49% de atividade antioxidante para a concentração de 50000 μg.mL-1.
Resumo:
The emulsion stability, composition, structure and rheology of four different commercial italian salad dressings manufactured with traditional and light formulations were evaluated. According to the results, the fat content ranged from 8% (w/w) (light) to 34% (w/w) (traditional), the carbohydrate concentration varied between 3.8% (w/w) (traditional) and 14.4% (w/w) (light) and the pH was between 3.6-3.9 for all samples. The microscopic and stability analyses showed that the only stable salad dressing was a light sample, which had the smallest droplet size when compared with the other samples. With respect to the rheological behaviour, all the salad dressings were characterized as thixotropic and shear thinning fluids. However, the stable dressing showed an overshoot at relatively low shear rates. This distinct rheological behavior being explained by the differences in its composition, particularly the presence of a maltodextrin network.
Resumo:
Guava nectars were formulated for approximately 10, 12, or 14 ºBrix, with 40% guava pulp. Sodium benzoate, 500 mg.kg-1 was used as preservative. The Brix value was adjusted with saturated sucrose syrup. The guava nectar was pasteurized (85 ºC/42 seconds) in tubular heat exchanger and then hot filled in 500 mL white glass bottles. The products were stored either at room temperature (25 ± 5 ºC) or refrigerated (5 ± 2 ºC) under fluorescent light exposure and analyzed on the day after processing (time zero) and also 40, 80, and 120 days of storage. Eight compounds were identified and quantified by Gas Chromatography (GC) -Mass Spectrometry (MS): hexanal, (E)-hex-2-enal, 1-hexenol, (Z)-hex-3-enol, (Z)-hex-3-enyl acetate, phenyl-3-propyl acetate, cinnamyl acetate, and acetic acid. There was no significant effect of thermal treatment on the volatile compound concentrations, except for a significant decrease (p = 0.0001) in hexanal and (Z)-hex-3-enyl acetate (p = 0.0029). As for the storage time, there was a much greater decrease in the esters contents, such as (Z)-hex-3-enyl and phenyl-3-propyl acetates. Cinnamyl acetate had the greatest decrease over storage time. Refrigeration was better than room temperature for guava nectar volatile compounds stability over storage time, mainly for esters compounds, which are important for the product aroma and flavor
Resumo:
Os estudos do chá verde brasileiro (Camellia sinensis var assamica) ainda são escassos quando comparados aos realizados com chás verdes produzidos em outros países. Os objetivos deste trabalho foram avaliar os efeitos do tempo de infusão, forma de acondicionamento da erva (a granel ou em sachês) e forma de preparo da bebida na extração dos biativos do chá verde brasileiro e na estabilidade da bebida obtida. Foram avaliados os parâmetros sólidos solúveis e compostos fenólicos extraídos, bem como as propriedades antioxidantes da bebida pelo método DPPH (radicais 2,2-difenil-1-picrilhidrazil). Os dados obtidos evidenciam que o uso da erva a granel sob agitação e tempo de infusão de 5 minutos foi a condição mais propícia para a extração dos bioativos do chá verde. Aumentando-se o volume de preparação da bebida sem alteração da razão erva:água, aumentou-se a eficiência da extração dos bioativos, devido ao fato de que o resfriamento de volumes maiores é mais demorado que o resfriamento de volumes menores. As bebidas obtidas foram estáveis por 24 horas em temperatura ambiente e em geladeira, visto não terem sido detectadas redução das propriedades antioxidantes e variações significativas dos seus principais bioativos epigalocatequina galato, epicatequina, catequina e cafeína.
Resumo:
In this work, the structural, mechanical, diffractometric, and thermal parameters of chitosan-hydroxypropylmethylcellulose (HPMC) films plasticized with sorbitol were studied. Solutions of HPMC (2% w/v) in water and chitosan (2% w/v) in 2% acetic acid solution were prepared. The concentration of sorbitol used was 10% (w/w) to both polymers. This solutions were mixed at different proportions (100/0; 70/30; 50/50; 30/70, and 0/100) of chitosan and HPMC, respectively, and 20 mL was cast in Petri dishes for further analysis of dried films. The miscibility of polymers was assessed by X-ray diffraction, scanning electronic microscopy (SEM), differential scanning calorimetry (DSC), and thermal gravimetric analysis (TGA). The results obtained indicate that the films are not fully miscible at a dry state despite the weak hydrogen bonding between the polymer functional groups.
Resumo:
Significant initiatives exist within the global food market to search for new, alternative protein sources with better technological, functional, and nutritional properties. Lima bean (Phaseolus lunatus L.) protein isolate was hydrolyzed using a sequential pepsin-pancreatin enzymatic system. Hydrolysis was performed to produce limited (LH) and extensive hydrolysate (EH), each with different degrees of hydrolysis (DH). The effects of hydrolysis were evaluated in vitro in both hydrolysates based on structural, functional and bioactive properties. Structural properties analyzed by electrophoretic profile indicated that LH showed residual structures very similar to protein isolate (PI), although composed of mixtures of polypeptides that increased hydrophobic surface and denaturation temperature. Functionality of LH was associated with amino acid composition and hydrophobic/hydrophilic balance, which increased solubility at values close to the isoelectric point. Foaming and emulsifying activity index values were also higher than those of PI. EH showed a structure composed of mixtures of polypeptides and peptides of low molecular weight, whose intrinsic hydrophobicity and amino acid profile values were associated with antioxidant capacity, as well as inhibiting angiotensin-converting enzyme. The results obtained indicated the potential of Phaseolus lunatus hydrolysates to be incorporated into foods to improve techno-functional properties and impart bioactive properties.
Resumo:
The aim of the present study was to precool cauliflower using forced-air, vacuum and high and low flow hydro cooling methods. The weight of the precooled cauliflower heads (5000±5 g) was measured before they were placed in standard plastic crates. Cauliflower heads, whose initial temperature was 23.5 ± 0.5 ºC, were cooled until the temperature reached at 1 ºC. During the precooling process, time-dependent temperature and energy consumption were measured, and during vacuum precooling, the decreasing pressure values were recorded, and a curve of time-dependent pressure decrease (vacuum) was built. The most suitable cooling method to precool cauliflower in terms of cooling time and energy consumption was vacuum, followed by the high and low flow hydro and forced-air precooling methods, respectively. The highest weight loss was observed in the vacuum precooling method, followed by the forced-air method. However, there was an increase in the weight of the cauliflower heads in the high and low flow hydro precooling method. The best colour and hardness values were found in the vacuum precooling method. Among all methods tested, the most suitable method to precool cauliflower in terms of cooling and quality parameters was the vacuum precooling method.
Resumo:
Cauliflower heads, which were precooled using four different methods including vacuum, forced-air, and high and low flow hydro precooling, were stored under controlled atmosphere and room conditions. Controlled atmosphere conditions (CA) were as follows: 1°C temperature, 90 ± 5% relative humidity, and 0:21 [(%CO2:%O2) – (0:21) control] atmosphere composition. Room conditions (RC) were: 22±1°C temperature and 55-60% humidity. Various quality parameters of the cauliflower heads were assessed during storage (days 0, 7, 14, 21, 28, and 35) under controlled atmosphere and room conditions (days 0, 5, and 10). During storage, weight loss, deterioration rate, overall sensory quality score, hardness, and colour (L, a, b, C and α) were evaluated. In the present study, the strength and quality parameters of cauliflower under CA and RC conditions were obtained. Vacuum precooling was found to be most suitable method before cauliflower was submitted to cold storage and sent to market. Furthermore, the storage of cauliflower without precooling resulted in a significant decrease in quality parameters.