982 resultados para steel will residue


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examined whether adding spin to a ball in the free kick situation in football affects a professional footballer's perception of the ball's future arrival position. Using a virtual reality set-up, participants observed the flight paths of aerodynamically realistic free kicks with (+/- 600 rpm) and without sidespin. With the viewpoint being fixed in the centre of the goal, participants had to judge whether the ball would have ended up in the goal or not. Results show that trajectories influenced by the Magnus force caused by sidespin gave rise to a significant shift in the percentage of goal responses. The resulting acceleration that causes the ball to continually change its heading direction as the trajectory unfolds does not seem to be taken into account by the participants when making goal judgments. We conclude that the visual system is not attuned to such accelerated motion, which may explain why goalkeepers appear to misjudge the future arrival point of such curved free kicks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A one-electron oxidation of a methionine residue is thought to be a key step in the neurotoxicity of the beta amyloid peptide of Alzheimer's disease. The chemistry of the radical cation of N-formylmethioninamide (11+) and two model systems, dimethyl sulfide (1+) and ethyl methyl sulfide (6+), in the presence of oxygen have been studied by B3LYP/6-31G(d) and CBS-RAD calculations. The stable form of 11+ has a three-electron bond between the sulfur radical cation and the carbonyl oxygen atom of the i - 1 residue. The radical cation may lose a proton from the methyl or methylene groups flanking the oxidized sulfur. Both 11+ and the resultant C-centered radicals may add oxygen to form peroxy radicals. The calculations indicate that unlike C-centered radicals the sulfur radical cation does not form a covalent bond to oxygen but rather forms a loose ion-induced dipole complex with an S-O separation of about 2.7 Å, and is bound by about 13 kJ mol-1 (on the basis of 1+ + O2). Direct intramolecular abstraction of an H atom from the C site is unlikely. It is endothermic by more than 20 kJ mol-1 and involves a high barrier (G = 79 kJ mol-1). The -to-S C-centered radicals will add oxygen to form peroxy radicals. The OH BDEs of the parent hydroperoxides are in the range of 352-355 kJ mol-1, similar to SH BDEs (360 kJ mol-1) and C-H BDEs (345-350 kJ mol-1). Thus, the peroxy radicals are oxidizing species comparable in strength to thiyl radicals and peptide backbone C-centered radicals. Each peroxy radical can abstract a hydrogen atom from the backbone C site of the Met residue to yield the corresponding C-centered radical/hydroperoxide in a weakly exothermic process with modest barriers in the range of 64-92 kJ mol-1.