955 resultados para statistical spatial analysis
Resumo:
Analyzing geographical patterns by collocating events, objects or their attributes has a long history in surveillance and monitoring, and is particularly applied in environmental contexts, such as ecology or epidemiology. The identification of patterns or structures at some scales can be addressed using spatial statistics, particularly marked point processes methodologies. Classification and regression trees are also related to this goal of finding "patterns" by deducing the hierarchy of influence of variables on a dependent outcome. Such variable selection methods have been applied to spatial data, but, often without explicitly acknowledging the spatial dependence. Many methods routinely used in exploratory point pattern analysis are2nd-order statistics, used in a univariate context, though there is also a wide literature on modelling methods for multivariate point pattern processes. This paper proposes an exploratory approach for multivariate spatial data using higher-order statistics built from co-occurrences of events or marks given by the point processes. A spatial entropy measure, derived from these multinomial distributions of co-occurrences at a given order, constitutes the basis of the proposed exploratory methods. © 2010 Elsevier Ltd.
Resumo:
A method of determining the spatial pattern of any histological feature in sections of brain tissue which can be measured quantitatively is described and compared with a previously described method. A measurement of a histological feature such as density, area, amount or load is obtained for a series of contiguous sample fields. The regression coefficient (β) is calculated from the measurements taken in pairs, first in pairs of adjacent samples and then in pairs of samples taken at increasing degrees of separation between them, i.e. separated by 2, 3, 4,..., n units. A plot of β versus the degree of separation between the pairs of sample fields reveals whether the histological feature is distributed randomly, uniformly or in clusters. If the feature is clustered, the analysis determines whether the clusters are randomly or regularly distributed, the mean size of the clusters and the spacing of the clusters. The method is simple to apply and interpret and is illustrated using simulated data and studies of the spatial patterns of blood vessels in the cerebral cortex of normal brain, the degree of vacuolation of the cortex in patients with Creutzfeldt-Jacob disease (CJD) and the characteristic lesions present in Alzheimer's disease (AD). Copyright (C) 2000 Elsevier Science B.V.
Resumo:
A method is described which enables the spatial pattern of discrete objects in histological sections of brain tissue to be determined. The method can be applied to cell bodies, sections of blood vessels or the characteristic lesions which develop in the brain of patients with neurodegenerative disorders. The density of the histological feature under study is measured in a series of contiguous sample fields arranged in a grid or transect. Data from adjacent sample fields are added together to provide density data for larger field sizes. A plot of the variance/mean ratio (V/M) of the data versus field size reveals whether the objects are distributed randomly, uniformly or in clusters. If the objects are clustered, the analysis determines whether the clusters are randomly or regularly distributed and the mean size of the clusters. In addition, if two different histological features are clustered, the analysis can determine whether their clusters are in phase, out of phase or unrelated to each other. To illustrate the method, the spatial patterns of senile plaques and neurofibrillary tangles were studied in histological sections of brain tissue from patients with Alzheimer's disease.
Resumo:
Sparse code division multiple access (CDMA), a variation on the standard CDMA method in which the spreading (signature) matrix contains only a relatively small number of nonzero elements, is presented and analysed using methods of statistical physics. The analysis provides results on the performance of maximum likelihood decoding for sparse spreading codes in the large system limit. We present results for both cases of regular and irregular spreading matrices for the binary additive white Gaussian noise channel (BIAWGN) with a comparison to the canonical (dense) random spreading code. © 2007 IOP Publishing Ltd.
Resumo:
This paper introduces a method for the analysis of regional linguistic variation. The method identifies individual and common patterns of spatial clustering in a set of linguistic variables measured over a set of locations based on a combination of three statistical techniques: spatial autocorrelation, factor analysis, and cluster analysis. To demonstrate how to apply this method, it is used to analyze regional variation in the values of 40 continuously measured, high-frequency lexical alternation variables in a 26-million-word corpus of letters to the editor representing 206 cities from across the United States.
Resumo:
Analyzing geographical patterns by collocating events, objects or their attributes has a long history in surveillance and monitoring, and is particularly applied in environmental contexts, such as ecology or epidemiology. The identification of patterns or structures at some scales can be addressed using spatial statistics, particularly marked point processes methodologies. Classification and regression trees are also related to this goal of finding "patterns" by deducing the hierarchy of influence of variables on a dependent outcome. Such variable selection methods have been applied to spatial data, but, often without explicitly acknowledging the spatial dependence. Many methods routinely used in exploratory point pattern analysis are2nd-order statistics, used in a univariate context, though there is also a wide literature on modelling methods for multivariate point pattern processes. This paper proposes an exploratory approach for multivariate spatial data using higher-order statistics built from co-occurrences of events or marks given by the point processes. A spatial entropy measure, derived from these multinomial distributions of co-occurrences at a given order, constitutes the basis of the proposed exploratory methods. © 2010 Elsevier Ltd.
Resumo:
We have studied the spatial distribution of plaques in coronal and tangential sections of the parahippocampal gyrus (PHG), the hippocampus, the frontal lobe and the temporal lobe of five SDAT patients. Sections were stained with cresyl violet and examined at two magnifications (x100 and x400). in all cases (and at both magnifications) statistical analysis using the Poisson distribution showed that the plaques were arranged in clumps (x100: V/M = 1.48 - 4.49; x400 V/M = 1.17 - 1.95). this indicates that both large scale and small scale clumping occurs. Application of the statistical techniques of pattern analysis to coronal sections of frontal and temporal cortex and PHG showed. furthermore, that both large (3200-6400 micron) and small scale (100 - 400 micron) clumps were arranged with a high degree of regularity in the tissue. This suggests that the clumps of plaques reflect underlying neural structure.
Resumo:
Disturbances of spatial orientation are an early clinical component of senile dementia of the Alzheimer type (SDAT). since it has been suggested that an elevated aluminium intake associated with chronic nutritional deficiencies of calcium and magnesium may play an important role in the aetiology of SDAT, we have investigated the effect of such a dietary regime on the spatial orientation abilities of female C57BL6 mice using the Morris swimming pool test. Statistical analysis of the performances of control and experimental groups indicate that the ability to orientate towards a submerged and thus invisible platform is conistently and markedly impaired in the experimental group. The ability to orientate towards a visible platform is also significantly impaired although to a lesser extent. Analysis of the performances of individual animals demonstrate that this impairment of orientation in the experimental group only occurs in a sub-group of animals: the remainder display normal orientational ability.
Resumo:
To determine the spatial pattern of ß-amyloid (Aß) deposition throughout the temporal lobe in Alzheimer's disease (AD). Methods: Sections of the complete temporal lobe from six cases of sporadic AD were immunolabelled with antibody against Aß. Fourier (spectral) analysis was used to identify sinusoidal patterns in the fluctuation of Aß deposition in a direction parallel to the pia mater or alveus. Results: Significant sinusoidal fluctuations in density were evident in 81/99 (82%) analyses. In 64% of analyses, two frequency components were present with density peaks of Aß deposits repeating every 500–1000 µm and at distances greater than 1000 µm. In 25% of analyses, three or more frequency components were present. The estimated period or wavelength (number of sample units to complete one full cycle) of the first and second frequency components did not vary significantly between gyri of the temporal lobe, but there was evidence that the fluctuations of the classic deposits had longer periods than the diffuse and primitive deposits. Conclusions: (i) Aß deposits exhibit complex sinusoidal fluctuations in density in the temporal lobe in AD; (ii) fluctuations in Aß deposition may reflect the formation of Aß deposits in relation to the modular and vascular structure of the cortex; and (iii) Fourier analysis may be a useful statistical method for studying the patterns of Aß deposition both in AD and in transgenic models of disease.