998 resultados para statistical forecasting
Resumo:
In this paper, we investigate the role of judgement in the formation of forecasts in commercial property markets. The investigation is based on interview surveys with the majority of UK forecast producers, who are using a range of inputs and data sets to form models to predict an array of variables for a range of locations. The findings suggest that forecasts need to be acceptable to their users (and purchasers) and consequently forecasters generally have incentives to avoid presenting contentious or conspicuous forecasts. Where extreme forecasts are generated by a model, forecasters often engage in ‘self‐censorship’ or are ‘censored’ following in‐house consultation. It is concluded that the forecasting process is significantly more complex than merely carrying out econometric modelling, forecasts are mediated and contested within organisations and that impacts can vary considerably across different organizational contexts.
Resumo:
Whilst the vast majority of the research on property market forecasting has concentrated on statistical methods of forecasting future rents, this report investigates the process of property market forecast production with particular reference to the level and effect of judgemental intervention in this process. Expectations of future investment performance at the levels of individual asset, sector, region, country and asset class are crucial to stock selection and tactical and strategic asset allocation decisions. Given their centrality to investment performance, we focus on the process by which forecasts of rents and yields are generated and expectations formed. A review of the wider literature on forecasting suggests that there are strong grounds to expect that forecast outcomes are not the result of purely mechanical calculations.
Resumo:
This paper uses data provided by three major real estate advisory firms to investigate the level and pattern of variation in the measurement of historic real estate rental values for the main European office centres. The paper assesses the extent to which the data providing organizations agree on historic market performance in terms of returns, risk and timing and examines the relationship between market maturity and agreement. The analysis suggests that at the aggregate level and for many markets, there is substantial agreement on direction, quantity and timing of market change. However, there is substantial variability in the level of agreement among cities. The paper also assesses whether the different data sets produce different explanatory models and market forecast. It is concluded that, although disagreement on the direction of market change is high for many market, the different data sets often produce similar explanatory models and predict similar relative performance.
Resumo:
The performance of various statistical models and commonly used financial indicators for forecasting securitised real estate returns are examined for five European countries: the UK, Belgium, the Netherlands, France and Italy. Within a VAR framework, it is demonstrated that the gilt-equity yield ratio is in most cases a better predictor of securitized returns than the term structure or the dividend yield. In particular, investors should consider in their real estate return models the predictability of the gilt-equity yield ratio in Belgium, the Netherlands and France, and the term structure of interest rates in France. Predictions obtained from the VAR and univariate time-series models are compared with the predictions of an artificial neural network model. It is found that, whilst no single model is universally superior across all series, accuracy measures and horizons considered, the neural network model is generally able to offer the most accurate predictions for 1-month horizons. For quarterly and half-yearly forecasts, the random walk with a drift is the most successful for the UK, Belgian and Dutch returns and the neural network for French and Italian returns. Although this study underscores market context and forecast horizon as parameters relevant to the choice of the forecast model, it strongly indicates that analysts should exploit the potential of neural networks and assess more fully their forecast performance against more traditional models.
Resumo:
In this paper we investigate the role of judgement in the formation of forecasts in commercial real estate markets. Based on interview surveys with the majority of forecast producers, we find that real estate forecasters are using a range of inputs and data sets to form models to predict an array of variables for a range of locations. The findings suggest that forecasts need to be acceptable to their users (and purchasers) and consequently forecasters generally have incentives to avoid presenting contentious or conspicuous forecasts. Where extreme forecasts are generated by a model, forecasters often engage in ‘self-censorship’ or are ‘censored’ following in-house consultation. It is concluded that the forecasting process is more complex than merely carrying out econometric modelling and that the impact of the influences within this process vary considerably across different organizational contexts.
Resumo:
An important part of strategic planning’s purpose should be to attempt to forecast the future, not simply to belatedly respond to events, or accept the future as inevitable. This paper puts forward a conceptual approach for seeking to achieve these aims and uses the Bournemouth and Poole area in Dorset as a vehicle for applying the basic methodology. The area has been chosen because of the significant issues that it currently faces in planning terms; and its future development possibilities. In order that alternative future choices for the area – different ‘developmental trajectories’ – can be evaluated, they must be carefully and logically constructed. Four Futures for Bournemouth/Poole have been put forward; they are titled and colour-coded: Future One is Maximising Growth – Golden Prospect which seeks to achieve the highest level of economic prosperity of the area; Future Two is Incremental Growth – Solid Silver which attempts to facilitate a steady, continuing, controlled pattern of the development for the area; Future Three is Steady State – Cobalt Blue which suggests that people in the area could be more concerned with preserving their quality of life in terms of their leisure and recreation rather than increasing wealth; Future Four is Environment First – Jade Green which makes the area’s environmental protection its top priority even at the possible expense of economic prosperity. The scenarios proposed here are not sacrosanct. Nor are they simply confined to the Bournemouth and Poole area. In theory, suitably modified, they could use in a variety of different contexts. Consideration of the scenarios – wherever located - might then generate other, additional scenarios. These are called hybrids, alloys and amalgams. Likewise it might identify some of them as inappropriate or impossible. Most likely, careful consideration of the scenarios will suggest hybrid scenarios, in which features from different scenarios are combined to produce alternative or additional futures for consideration. The real issue then becomes how best to fashion such a future for the particular area under consideration
Resumo:
This paper examines the significance of widely used leading indicators of the UK economy for predicting the cyclical pattern of commercial real estate performance. The analysis uses monthly capital value data for UK industrials, offices and retail from the Investment Property Databank (IPD). Prospective economic indicators are drawn from three sources namely, the series used by the US Conference Board to construct their UK leading indicator and the series deployed by two private organisations, Lombard Street Research and NTC Research, to predict UK economic activity. We first identify turning points in the capital value series adopting techniques employed in the classical business cycle literature. We then estimate probit models using the leading economic indicators as independent variables and forecast the probability of different phases of capital values, that is, periods of declining and rising capital values. The forecast performance of the models is tested and found to be satisfactory. The predictability of lasting directional changes in property performance represents a useful tool for real estate investment decision-making.
Resumo:
Load forecasting is an important task in the management of a power utility. The most recent developments in forecasting involve the use of artificial intelligence techniques, which offer powerful modelling capabilities. This paper discusses these techniques and provides a review of their application to load forecasting.
Resumo:
We propose a new modelling framework suitable for the description of atmospheric convective systems as a collection of distinct plumes. The literature contains many examples of models for collections of plumes in which strong simplifying assumptions are made, a diagnostic dependence of convection on the large-scale environment and the limit of many plumes often being imposed from the outset. Some recent studies have sought to remove one or the other of those assumptions. The proposed framework removes both, and is explicitly time-dependent and stochastic in its basic character. The statistical dynamics of the plume collection are defined through simple probabilistic rules applied at the level of individual plumes, and van Kampen's system size expansion is then used to construct the macroscopic limit of the microscopic model. Through suitable choices of the microscopic rules, the model is shown to encompass previous studies in the appropriate limits, and to allow their natural extensions beyond those limits.