983 resultados para stable isotopic


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The stable isotope values for a range of size classes of Hyporhamphus regularis ardelio from Moreton Bay, south-east Australia were determined. There was a positive linear relationship between 613 C and standard length (L-s) (delta(13)C = 0.034 Ls - 16-23; r(2) = 0.78). delta(13)C ranged from -8.48 to - 17.29 parts per thousand with the smallest size class (50 mm Ls) being on average 1.04 parts per thousand enriched with respect to that of zooplankton (Temora turbinata) and 7.97 parts per thousand depleted compared to Zostera capricorni. delta(13)C was positively correlated with Ls (P 0.0 1) with delta(15) N, ranging from 9.18 to 11.00 parts per thousand. Fish of all size classes were on average 2.32 and 7.63 parts per thousand more enriched than zooplankton and seagrass, respectively. Carbon isotope data indicate that H. r. ardelio commence life as carnivores and change to a diet in which seagrass is the primary carbon source. The dependence on animal matter, however, is always present. Due to the low percentage of nitrogen in Z. capricorni (2.5%) compared to zooplankton (9.1%) it appears that nitrogen from zooplankton is necessary throughout their life history with the carbon requirements for these fish coming chiefly from Z. capricorni. (c) 2005 The Fisheries Society of the British Isles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alteration zones at the gold-rich Bajo de la Alumbrera porphyry copper deposit in northwestern Argentina are centered on several porphyritic intrusions. They are zoned from a central copper-iron sulfide and gold-mineralized potassic (biotite-K-feldspar +/- quartz) core outward to propylitic (chlorite-illite-epidote-calcite) assemblages. A mineralized intermediate argillic alteration assemblage (chlorite-illite +/- pyrite) has overprinted the potassic alteration zone across the top and sides of the deposit and is itself zoned outward into phyllic (quartzinuscovite-illite +/- pyrite) alteration. This study contributes new data to previously reported delta(18)O and delta D compositions of fluids responsible for the alteration at Bajo de la Alumbrera, and the data are used to infer likely ore-forming processes. Measured and calculated delta(18)O and delta D values of fluids (+8.3 to +10.2 and -33 to -81 parts per thousand, respectively) confirm a primary magmatic origin for the earliest potassic alteration phase. Lower temperature potassic alteration formed from magmatic fluids with lower delta D values (down to -123 parts per thousand). These depleted compositions are distinct from meteoric water and consistent with degassing and volatile exsolution of magmatic fluids derived from an underlying magma. Variability in the calculated composition of fluid associated with potassic alteration is explained in terms of phase separation (or boiling). if copper-iron sulfide deposition occurred during cooling (as proposed elsewhere), this cooling was largely a result of phase separation. Magmatic water was directly involved in the formation of overprinting intermediate argillic alteration assemblages at Bajo de la Alumbrera. Calculated delta(18)O and delta D values of fluids associated with this alteration range from +4.8 to +8.1 and -31 to -71 per mil, respectively Compositions determined for fluids associated with phyllic alteration (-0.8 to +10.2 and -31 to -119 parts per thousand) overlap with the values determined for the intermediate argillic alteration. We infer that phyllic alteration assemblages developed during two stages; the first was a high-temperature (400 degrees-300 degrees C) stage with D-depleted water (delta D = -66 to -119 parts per thousand). This compositional range may have resulted from magma degassing and/or the injection of new magmatic water into a compositionally evolved hydrothermal system. The isotopic variations also can be explained by increased fluid-rock interaction. The second stage of phyllic alteration occurred at a lower temperature (similar to 200 degrees C), and variations in the modeled isotopic compositions imply mixing of magmatic and meteoric waters. Ore deposition that occurred late in the evolution of the hydrothermal system was probably associated with further cooling of the magmatic fluid, in part caused by fluid-rock interaction and phase separation. Changing pH and/or oxygen fuoracity may have caused additional ore deposition. The ingress of meteoric water appears to postdate the bulk of mineralization and occurred as the system at Bajo de la Alumbrera waned.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The stratiform Century Zn-Pb deposit and the discordant Zn-Pb lode deposits of the Burketown mineral field, northern Australia, host ore and gangue minerals with primary fluid inclusions that have not been affected by the Isan orogeny, thus providing a unique opportunity to investigate the nature of the ore-forming brines. All of the deposits are hosted in shales and siltstones belonging to the Isa superbasin and comprise sphalerite, pyrite, carbonate, quartz, galena, minor chalcopyrite, and minor illite. According to Pb model ages, the main ore stage of mineralization at Century formed at I575 Ma, some 20 m.y. after deposition of the host shale sequence. Microthermometry on undeformed, primary fluid inclusions hosted in porous sphalerite shows that the Zn at Century was transported to the deposit by a homogeneous, Ca2+- and Na+-bearing brine with a salinity of 21.6 wt percent NaCl equiv. delta D-fluid of the fluid inclusion water ranges from -89 to -83 per mil, consistent with a basinal brine that evolved from meteoric water. Fluid inclusion homogenization temperatures range between 74 degrees and 125 degrees C, which are lower than the 120 degrees to 160 degrees C range calculated from vitrinite reflectance and illite crystallinity data from the deposit. This discrepancy indicates that mineralization likely formed at 50 to 85 Mpa, corresponding to a depth of 1,900 to 3,100 m. Transgressive galena-sphalerite veins that cut stratiform mineralization at Century and breccia-filled quartz-dolomite-sphalerite-galena veins in the discordant Zn-Pb lodes have Pb model ages between 1575 and 1485 Ma. Raman spectroscopy and microthermometry reveal that the primary fluid inclusions in these veins contain Ca2+, Na+. but they have lower salinities between 23 and 10 wt percent NaCl equiv and higher delta D-fluid values ranging from -89 to -61 per mil than fluid inclusions in porous sphalerite from Century. Fluid inclusion water from sphalerite in one of the lode deposits has delta O-18(fluid) values of 1.6 and 2.4 per mil, indistinguishable from delta O-18(fluid) values between -0.3 to +7.4 per mil calculated from the isotopic composition of coexisting quartz, dolomite, and illite. The trend toward lower salinities and higher delta D-fluid values relative to the earlier mineralizing fluids is attributed to mixing between the fluid that formed Century and a seawater-derived fluid from a different source. Based on seismic data from the Lawn Hill platform and paragenetic and geochemical results from the Leichhardt River fault trough to the south, diagenetic aquifers in the Underlying Calvert superbasin appear to have been the most likely sources for the fluids that formed Century and the discordant lode deposits. Paragenetically late sphalerite and calcite cut sphalerite, quartz, and dolomite in the lode deposits and contain Na+-dominated fluid inclusions with much lower salinities than their older counterparts. The isotopic composition of calcite also indicates delta O-18(fluid) from 3.3 to 10.7 per mil, which is larger than the range obtained from synmineralization minerals, supporting the idea that a unique fluid source was involved. The absolute timing of this event is unclear, but a plethora of Pb model, K-Ar, and Ar-40/Ar-39 ages between 1440 and 1300 Ma indicate that a significant volume of fluid was mobilized at this time. The deposition of the Roper superbasin from ca. 1492 +/- 4 Ma suggests that these late veins formed from fluids that may have been derived from aquifers in overlying sediments of the Roper superbasin. Clear, buck, and drusy quartz in veins unrelated to any form of Pb-Zn mineralization record the last major fluid event in the Burketown mineral field and form distinct outcrops and ridges in the district. Fluid inclusions in these veins indicate formation from a low-salinity, 300 degrees +/- 80 degrees C fluid. Temperatures approaching 300 degrees C recorded in organic matter adjacent to faults and at sequence boundaries correspond to K-Ar ages spanning 1300 to 1100 Ma, which coincides with regional hydrothermal activity in the northern Lawn Hill platform and the emplacement of the Lakeview Dolerite at the time of assemblage of the Rodinia supercontinent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Everglades National Park (ENP) is about to undergo the world's largest wetland restoration with the aim of improving the quality, timing and distribution of water flow. The changes in water flow are hypothesized to alter the nutrient fluxes and organic matter (OM) dynamics within ENP, especially in the estuarine areas. This study used a multi-proxy approach of molecular markers and stable δ 13C isotope measurements, to determine the present day OM dynamics in ENP. ^ OM dynamics in wetland soils/sediments have proved to be difficult to understand using traditional geochemical approaches. These are often inadequate to describe the multitude of OM sources (e.g. higher land plant, emergent vegetation, submerged vegetation) to the soils/sediments and the complex diagenetic processes that can alter the OM characteristics. A multi-proxy approach, however, that incorporates both molecular level and bulk parameter information is ideal to comprehend complex OM dynamics in aquatic environments. Therefore, biomass-specific molecular markers or proxies can be useful in tracing the sources and processing of OM. This approach was used to examine the OM dynamics in the two major drainage basins, Shark River Slough and Taylor River Slough, of ENP. Freshwater to marine transects were sampled in both systems for soils/sediments and suspended particulate organic matter (SPOM) to be characterized through bulk OM analyses, lipid biomarker determinations (e.g. sterols, fatty acids, hydrocarbons and triterpenoids) and compound-specific stable carbon isotope (δ 13C) determinations. ^ One key accomplishment of the research was the assessment of a molecular marker proxy (Paq) to distinguish between emergent/higher plant vegetation from submerged vegetation within ENP. This proxy proved to be quite useful at tracing OM inputs to the soils/sediments of ENP. A second key accomplishment was the development of a 3-way model using vegetation specific molecular markers. This novel, descriptive model was successfully applied to the estuarine areas of Taylor and Shark River sloughs, providing clear evidence of mixing of freshwater, estuarine and marine derived OM in these areas. In addition, diagenetic transformations of OM in these estuaries were found to be quite different between Taylor and Shark Rivers, and are likely a result of OM quality and hydrological differences. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

δ13C and δ15N values were determined for the seagrassThalassia testudinum at four permanent seagrass monitoring stations in southFlorida, USA, through a quarterly sampling program over 3-years (1996–1998). All sites are seagrass beds with water depths of less than 6 m. Two sites are located on the Florida Bay side of the Florida Keys, and the other two sites are on the Atlantic side. The data analyzed over the 3 year study period display unique patterns associated with seasonal changes in primary productivity and potentially changes in the N and C pools. The mean carbon and nitrogenisotope values of T. testudinum from all four stations vary from −7.2 to −10.4‰ and 1.1 to 2.2‰, respectively. However, certain stations displayed anomalously depleted nitrogenisotope values (as low as −1.2‰). These values may indicate that biogeochemical processes like N fixation, ammonification and denitrification cause temporal changes in the isotopic composition of the source DIN. Both δ13C and δ15N values displayed seasonal enrichment-depletion patterns, with maximum enrichment occurring during the summer to early fall. The intra-annual variations of δ13C values from the different stations ranged from about 1 to 3.5‰; whereas variations in δ15N ranged from about 1 to 4.9‰. Certain sites showed a positive relationship between isotope values and productivity. These data indicate δ13C values display a high degree of seasonal variability as related to changes in productivity. δ15N values show clear intra-annual variations, but the observed changes do not necessarily follow a distinct seasonal cycle, indicating that changes in DIN will need further investigation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

δ13C values were determined from cypresstree rings from two different study areas in SouthFlorida. One site is located in the Southeastern Everglades Marsh, where pond cypress (Taxodium ascendens) was sampled from tree islands (annual tree rings from 1970 to 2000). Bald cypress (Taxodium distichum) trees were sampled at the other site, located along the Loxahatchee River in a coastal wetland (decadal tree rings from 1830 to 1990). The isotopic time series from both sites display different, location-specific information. The pond cypressisotopic time series has a positive correlation with the total amount of annual precipitation, while the bald cypress data from the Loxahatchee River study area had two different records dependent on the level of saltwater stress. In general, for terrestrial trees growing in a temperate environment, water stress causes an increase in water-use efficiency (WUE) resulting in a relative 13C enrichment. Yet, trees growing in wetland settings in some cases do not respond in the same manner. We propose a conceptual model based on changes in carbon assimilation and isotopic fractionation as controlled by differences in stomatal resistance (water stress) and mesophyll resistance (biochemical and nutrient related) to explain the isotopic records from both sites. With further work and a longer time series, our approach may be tested, and used to reconstruct change in hydroperiods further back in time, and potentially provide a baseline for wetland restoration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The degree of reliance of newborn sharks on energy reserves from maternal resource allocation and the timescales over which these animals develop foraging skills are critical factors towards understanding the ecological role of top predators in marine ecosystems. We used muscle tissue stable carbon isotopic composition and fatty acid analysis of bull sharks Carcharhinus leucas to investigate early-life feeding ecology in conjunction with maternal resource dependency. Values of δ13C of some young-of-the-year sharks were highly enriched, reflecting inputs from the marine-based diet and foraging locations of their mothers. This group of sharks also contained high levels of the 20:3ω9 fatty acid, which accumulates during periods of essential fatty acid deficiency, suggesting inadequate or undeveloped foraging skills and possible reliance on maternal provisioning. A loss of maternal signal in δ13C values occurred at a length of approximately 100 cm, with muscle tissue δ13C values reflecting a transition from more freshwater/estuarine-based diets to marine-based diets with increasing length. Similarly, fatty acids from sharks >100 cm indicated no signs of essential fatty acid deficiency, implying adequate foraging. By combining stable carbon isotopes and fatty acids, our results provided important constraints on the timing of the loss of maternal isotopic signal and the development of foraging skills in relation to shark size and imply that molecular markers such as fatty acids are useful for the determination of maternal resource dependency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Seagrass meadows are highly productive habitats found along many of the world's coastline, providing important services that support the overall functioning of the coastal zone. The organic carbon that accumulates in seagrass meadows is derived not only from seagrass production but from the trapping of other particles, as the seagrass canopies facilitate sedimentation and reduce resuspension. Here we provide a comprehensive synthesis of the available data to obtain a better understanding of the relative contribution of seagrass and other possible sources of organic matter that accumulate in the sediments of seagrass meadows. The data set includes 219 paired analyses of the carbon isotopic composition of seagrass leaves and sediments from 207 seagrass sites at 88 locations worldwide. Using a three source mixing model and literature values for putative sources, we calculate that the average proportional contribution of seagrass to the surface sediment organic carbon pool is ∼50%. When using the best available estimates of carbon burial rates in seagrass meadows, our data indicate that between 41 and 66 gC m−2 yr−1 originates from seagrass production. Using our global average for allochthonous carbon trapped in seagrass sediments together with a recent estimate of global average net community production, we estimate that carbon burial in seagrass meadows is between 48 and 112 Tg yr−1, showing that seagrass meadows are natural hot spots for carbon sequestration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stable isotope analysis has emerged as one of the primary means for examining the structure and dynamics of food webs, and numerous analytical approaches are now commonly used in the field. Techniques range from simple, qualitative inferences based on the isotopic niche, to Bayesian mixing models that can be used to characterize food-web structure at multiple hierarchical levels. We provide a comprehensive review of these techniques, and thus a single reference source to help identify the most useful approaches to apply to a given data set. We structure the review around four general questions: (1) what is the trophic position of an organism in a food web?; (2) which resource pools support consumers?; (3) what additional information does relative position of consumers in isotopic space reveal about food-web structure?; and (4) what is the degree of trophic variability at the intrapopulation level? For each general question, we detail different approaches that have been applied, discussing the strengths and weaknesses of each. We conclude with a set of suggestions that transcend individual analytical approaches, and provide guidance for future applications in the field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Isotope signatures of mangrove leaves can vary depending on discrimination associated with plant response to environmental stressors defined by gra­dients of resources (such as water and nutrient limitation) and regulators (such as salinity and sul­fide toxicity). We tested the variability of man­grove isotopic signatures (d13C and d15N) across a stress gradient in south Florida, using green leaves from four mangrove species collected at six sites. Mangroves across the landscape studied are stressed by resource and regulator gradients repre­sented by limited phosphorus concentrations com­bined with high sulfide concentrations, respec­tively. Foliar d13C ratios exhibited a range from ­ 24.6 to –32.7‰, and multiple regression analysis showed that 46% of the variability in mangrove d13C composition could be explained by the differ­ences in dissolved inorganic nitrogen, soluble reac­tive phosphorus, and sulfide porewater concentra­tions. 15N discrimination in mangrove species ranged from –0.1 to 7.7‰, and porewater N, salin­ity, and leaf N:Pa ratios accounted for 41% of this variability in mangrove leaves. The increase in soil P availability reduced 15N discrimination due to higher N demand. Scrub mangroves (<1.5 m tall) are more water-use efficient, as indicated by higher d13C; and have greater nutrient use efficiency ratios of P than do tall mangroves (5 to 10 m tall) existing in sites with greater soil P concentrations. The high variability of mangrove d13C and d15N across these resource and regulator gradients could be a con­founding factor obscuring the linkages between mangrove wetlands and estuarine food webs. These results support the hypothesis that landscape fac­tors may control mangrove structure and function, so that nutrient biogeochemistry and mangrove-based food webs in adjacent estuaries should ac­count for watershed-specific organic inputs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The assessment of organic matter (OM) sources in sediments and soils is a key to better understand the biogeochemical cycling of carbon in aquatic environments. While traditional molecular marker-based methods have provided such information for typical two end member (allochthonous/terrestrial vs. autochthonous/microbial)-dominated systems, more detailed, biomass-specific assessments are needed for ecosystems with complex OM inputs such as tropical and sub-tropical wetlands and estuaries where aquatic macrophytes and macroalgae may play an important role as OM sources. The aim of this study was to assess the utility of a combined approach using compound specific stable carbon isotope analysis and an n-alkane based proxy (Paq) to differentiate submerged and emergent/terrestrial vegetation OM inputs to soils/sediments from a sub-tropical wetland and estuarine system, the Florida Coastal Everglades. Results show that Paq values (0.13–0.51) for the emergent/terrestrial plants were generally lower than those for freshwater/marine submerged vegetation (0.45–1.00) and that compound specific δ13C values for the n-alkanes (C23 to C31) were distinctively different for terrestrial/emergent and freshwater/marine submerged plants. While crossplots of the Paq and n-alkane stable isotope values for the C23n-alkane suggest that OM inputs are controlled by vegetation changes along the freshwater to marine transect, further resolution regarding OM input changes along this landscape was obtained through principal component analysis (PCA), successfully grouping the study sites according to the OM source strengths. The data show the potential for this n-alkane based multi-proxy approach as a means of assessing OM inputs to complex ecosystems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. The niche variation hypothesis predicts that among-individual variation in niche use will increase in the presence of intraspecific competition and decrease in the presence of interspecific competition. We sought to determine whether the local isotopic niche breadth of fish inhabiting a wetland was best explained by competition for resources and the niche variation hypothesis, by dispersal of individuals from locations with different prey resources or by a combination of the two. We analysed stable isotopes of carbon and nitrogen as indices of feeding niche and compared metrics of within-site spread to characterise site-level isotopic niche breadth. We then evaluated the explanatory power of competing models of the direct and indirect effects of several environmental variables spanning gradients of disturbance, competition strength and food availability on among-individual variation of the eastern mosquitofish (Gambusia holbrooki). 2. The Dispersal model posits that only the direct effect of disturbance (i.e. changes in water level known to induce fish movement) influences among-individual variation in isotopic niche. The Partitioning model allows for only direct effects of local food availability on among-individual variation. The Combined model allows for both hypotheses by including the direct effects of disturbance and food availability. 3. A linear regression of the Combined model described more variance than models limited to the variables of either the Dispersal or Partitioning models. Of the independent variables considered, the food availability variable (per cent edible periphyton) explained the most variation in isotopic niche breadth, followed closely by the disturbance variable (days since last drying event). 4. Structural equation modelling provided further evidence that the Combined model was best supported by the data, with the Partitioning and the Dispersal models only modestly less informative. Again, the per cent edible periphyton was the variable with the largest direct effect on niche variability, with other food availability variables and the disturbance variable only slightly less important. Indirect effects of heterospecific and conspecific competitor densities were also important, through their effects on prey density. 5. Our results support the Combined hypotheses, although partitioning mechanisms appear to explain the most diet variation among individuals in the eastern mosquitofish. The results also support some predictions of the niche variation hypothesis, although both conspecific and interspecific competition appeared to increase isotopic niche breadth in contrast to predictions that interspecific competition would decrease it. We think this resulted from high diet overlap of co-occurring species, most of which consume similar macroinvertebrates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding how natural and anthropogenic drivers affect extant food webs is critical to predicting the impacts of climate change and habitat alterations on ecosystem dynamics. In the Florida Everglades, seasonal reductions in freshwater flow and precipitation lead to annual migrations of aquatic taxa from marsh habitats to deep-water refugia in estuaries. The timing and intensity of freshwater reductions, however, will be modified by ongoing ecosystem restoration and predicted climate change. Understanding the importance of seasonally pulsed resources to predators is critical to predicting the impacts of management and climate change on their populations. As with many large predators, however, it is difficult to determine to what extent predators like bull sharks (Carcharhinus leucas) in the coastal Everglades make use of prey pulses currently. We used passive acoustic telemetry to determine whether shark movements responded to the pulse of marsh prey. To investigate the possibility that sharks fed on marsh prey, we modelled the predicted dynamics of stable isotope values in bull shark blood and plasma under different assumptions of temporal variability in shark diets and physiological dynamics of tissue turnover and isotopic discrimination. Bull sharks increased their use of upstream channels during the late dry season, and although our previous work shows long-term specialization in the diets of sharks, stable isotope values suggested that some individuals adjusted their diets to take advantage of prey entering the system from the marsh, and as such this may be an important resource for the nursery. Restoration efforts are predicted to increase hydroperiods and marsh water levels, likely shifting the timing, duration and intensity of prey pulses, which could have negative consequences for the bull shark population and/or induce shifts in behaviour. Understanding the factors influencing the propensity to specialize or adopt more flexible trophic interactions will be an important step in fully understanding the ecological role of predators and how ecological roles may vary with environmental and anthropogenic changes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Top predators are best known for their ability to affect their communities through inflicting mortality on prey and inducing behavioral modifications (e.g. risk effects). Recent scientific evidence suggests that predators may have additional roles in bottom-up processes such as transporting materials within and across habitat boundaries. The Florida Coastal Everglades (FCE) is an “upside-down” oligotrophic estuary where productivity decreases from the mouth of the estuary to freshwater marshes. Research in the FCE suggest that predators can act as mobile links between disparate habitats and can potentially affect nutrient and biogeochemical dynamics through localized behaviors (e.g. American alligators and juvenile bull sharks). To date, little is known about bottlenose dolphins (Tursiops truncatus) in the FCE beyond broad-scale patterns of abundance. Because they are highly mobile mammals commonly found in coastal waters, bottlenose dolphins are an interesting case study for investigating the influence of ecology on the evolution of local adaptations. Within this influence lies the potential for investigation of the related roles those adaptations play in coastal ecosystems due to their high metabolic rates, movement capabilities, and tendency to display specialized foraging behaviors. Stable isotope analysis of biopsy samples were used to investigate habitat use, trophic interactions, and patterns of individual specialization in bottlenose dolphins to gain functional insights into ecosystem dynamics. δ13 C isotopic values are used to differentiate the relative importance of a food web to the diet of an organism, while δ15 N values are used to evaluate the relative trophic position of an organism. Dolphin δ13 C isotopic values seem to suggest that dolphins are foraging within single ecosystems and may not be moving nutrients across ecosystem boundaries while their δ15 N isotopic values appear to be of a top predator, at a similar level to bull sharks and alligators in FCE. Further research is necessary to provide vital insight into the large predators’ role in affecting the evolution of local adaptations. Conducting this research should also provide information for predicting how future changes occurring due to restoration dynamics (see CERP: evergladesplan.org) and climate change will affect the ecological roles of these animals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Top predators are best known for their ability to affect their communities through inflicting mortality on prey and inducing behavioral modifications (e.g. risk effects). Recent scientific evidence suggests that predators may have additional roles in bottom-up processes such as transporting materials within and across habitat boundaries. The Florida Coastal Everglades (FCE) is an “upside-down” oligotrophic estuary where productivity decreases from the mouth of the estuary to freshwater marshes. Research in the FCE suggest that predators can act as mobile links between disparate habitats and can potentially affect nutrient and biogeochemical dynamics through localized behaviors (e.g. American alligators and juvenile bull sharks). To date, little is known about bottlenose dolphins (Tursiops truncatus) in the FCE beyond broad-scale patterns of abundance. Because they are highly mobile mammals commonly found in coastal waters, bottlenose dolphins are an interesting case study for investigating the influence of ecology on the evolution of local adaptations. Within this influence lies the potential for investigation of the related roles those adaptations play in coastal ecosystems due to their high metabolic rates, movement capabilities, and tendency to display specialized foraging behaviors. Stable isotope analysis of biopsy samples were used to investigate habitat use, trophic interactions, and patterns of individual specialization in bottlenose dolphins to gain functional insights into ecosystem dynamics. δ13 C isotopic values are used to differentiate the relative importance of a food web to the diet of an organism, while δ15 N values are used to evaluate the relative trophic position of an organism. Dolphin δ13 C isotopic values seem to suggest that dolphins are foraging within single ecosystems and may not be moving nutrients across ecosystem boundaries while their δ15 N isotopic values appear to be of a top predator, at a similar level to bull sharks and alligators in FCE. Further research is necessary to provide vital insight into the large predators’ role in affecting the evolution of local adaptations. Conducting this research should also provide information for predicting how future changes occurring due to restoration dynamics (see CERP: evergladesplan.org) and climate change will affect the ecological roles of these animals.