993 resultados para spinal reflexes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: There is some evidence from a Cochrane review that rehabilitation following spinal surgery may be beneficial. Methods: We conducted a survey of current post-operative practice amongst spinal surgeons in the United Kingdom in 2002 to determine whether such interventions are being included routinely in the post-operative management of spinal patients. The survey included all surgeons who were members of either the British Association of Spinal Surgeons ( BASS) or the Society for Back Pain Research. Data on the characteristics of each surgeon and his or her current pattern of practice and post-operative care were collected via a reply-paid postal questionnaire. Results: Usable responses were provided by 57% of the 89 surgeons included in the survey. Most surgeons (79%) had a routine post-operative management regime, but only 35% had a written set of instructions that they gave to their patients concerning this. Over half (55%) of surgeons do not send their patients for any physiotherapy after discharge, with an average of less than two sessions of treatment organised by those that refer for physiotherapy at all. Restrictions on lifting, sitting and driving showed considerable inconsistency both between surgeons and also within the recommendations given by individual surgeons. Conclusion: Demonstrable inconsistencies within and between spinal surgeons in their approaches to post-operative management can be interpreted as evidence of continuing and significant uncertainty across the sub-speciality as to what does constitute best care in these areas of practice. Conducting further large, rigorous, randomised controlled trials would be the best method for obtaining definitive answers to these questions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neonatal X-irradiation of central nervous system (CNS) tissue markedly reduces the glial population in the irradiated area. Previous in vivo studies have demonstrated regenerative success of adult dorsal root ganglion (DRG) neurons into the neonatally-irradiated spinal cord. The present study was undertaken to determine whether these results could be replicated in an in vitro environment. The lumbosacral spinal cord of anaesthetised Wistar rat pups, aged between 1 and 5 days, was subjected to a single dose (40 Gray) of X-irradiation. A sham-irradiated group acted as controls. Rats were allowed to reach adulthood before being killed. Their lumbosacral spinal cords were dissected out and processed for sectioning in a cryostat. Cryosections (10 mum-thick) of the spinal cord tissue were picked up on sterile glass coverslips and used as substrates for culturing dissociated adult DRG neurons. After an appropriate incubation period, cultures were fixed in 2% paraformaldehyde and immunolabelled to visualise both the spinal cord substrate using anti-glial fibrillary acidic protein (GFAP) and the growing DRG neurons using anti-growth associated protein (GAP-43). Successful growth of DRG neurites was observed on irradiated, but not on non-irradiated, sections of spinal cord. Thus, neonatal X-irradiation of spinal cord tissue appears to alter its environment such that it can later support, rather than inhibit, axonal regeneration. It is suggested that this alteration may be due, at least in part, to depletion in the number of and/or a change in the characteristics of the glial cells. (C) 2000 ISDN. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1, During embryonic development, a diverse array of neurons and glia are generated at specific positions along the dorsoventral and rostro-caudal axes of the spinal cord from a common pool of precursor cells. 2. This cell type diversity can be distinguished by the spatially and temporally coordinated expression of several transcription factors that are also linked to cell type specification at a very early stage of spinal cord development. 3, Recent studies have started to uncover that the generation of cell type diversity in the developing spinal cord. Moreover, distinct cell types in the spinal cord appear to be determined by the spatially and temporally coordinated expression of transcription factors. 4. The expression of these factors also appears to be controlled by gradients of factors expressed by ventral and dorsal midline cells, namely Sonic hedgehog and members of the transforming growth factor-beta family. 5, Changes in the competence of precursor cells and local cell interactions may also play important roles in cell type specification within the developing spinal cord.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: