956 resultados para sperm antibody
Resumo:
Rheumatoid inflammation is characterised by the production of rheumatoid factor antibodies directed against denatured IgG. Oxygen free radicals have the potential to denature all manner of proteins and can be generated by activated phagocytic cells in the inflamed joint. By modifying routine ELISA and nephelometric procedures for measuring rheumatoid factor, (i.e. substituting free radical altered IgG for rabbit and heat aggregated IgG as antigens) we have observed that oxygen radicals, generated by (1) UV light and (2) PMA-activated neutrophils, give rise to monomeric and polymeric forms of IgG which have increased reactivity towards IgM and IgA polyclonal rheumatoid factor antibodies. We conclude that free radical alteration of IgG may be a stimulus to the formation of immune complexes with rheumatoid factor antibody, thereby promoting and amplifying tissue damage during rheumatoid inflammation.
Resumo:
Glyoxal, a reactive aldehyde, is a decomposition product of lipid hydroperoxides, oxidative deoxyribose breakdown, or autoxidation of sugars, such as glucose. It readily forms DNA adducts, generating potential carcinogens such as glyoxalated deoxycytidine (gdC). A major drawback in assessing gdC formation in cellular DNA has been methodologic sensitivity. We have developed an mAb that specifically recognizes gdC. Balb/c mice were immunized with DNA, oxidatively modified by UVC/hydrogen peroxide in the presence of endogenous metal ions. Although UVC is not normally considered an oxidizing agent, a UVC/hydrogen peroxide combination may lead to glyoxalated bases arising from hydroxyl radical damage to deoxyribose. This damaging system was used to induce numerous oxidative lesions including glyoxal DNA modifications, from which resulted a number of clones. Clone F3/9/H2/G5 showed increased reactivity toward glyoxal-modified DNA greater than that of the immunizing antigen. ELISA unequivocally showed Ab recognition toward gdC, which was confirmed by gas chromatography-mass spectrometry of the derivatized adduct after formic acid hydrolysis to the modified base. Binding of Ab F3/9 with glyoxalated and untreated oligomers containing deoxycytidine, deoxyguanosine, thymidine, and deoxyadenosine assessed by ELISA produced significant recognition (p 0.0001) of glyoxal-modified deoxycytidine greater than that of untreated oligomer. Additionally, inhibition ELISA studies using the glyoxalated and native deoxycytidine oligomer showed increased recognition for gdC with more than a 5-fold difference in IC50 values. DNA modified with increasing levels of iron (II)/EDTA produced a dose-dependent increase in Ab F3/9 binding. This was reduced in the presence of catalase or aminoguanidine. We have validated the potential of gdC as a marker of oxidative DNA damage and showed negligible cross-reactivity with 8-oxo-2'-deoxyguanosine or malondialdehyde-modified DNA as well as its utility in immunocytochemistry. Formation of the gdC adduct may involve intermediate structures; however, our results strongly suggest Ab F3/9 has major specificity for the predominant product, 5-hydroxyacetyl-dC.
Resumo:
Cells undergoing apoptosis in vivo are rapidly detected and cleared by phagocytes. Swift recognition and removal of apoptotic cells is important for normal tissue homeostasis and failure in the underlying clearance mechanisms has pathological consequences associated with inflammatory and auto-immune diseases. Cell cultures in vitro usually lack the capacity for removal of non-viable cells because of the absence of phagocytes and, as such, fail to emulate the healthy in vivo micro-environment from which dead cells are absent. While a key objective in cell culture is to maintain viability at maximal levels, cell death is unavoidable and non-viable cells frequently contaminate cultures in significant numbers. Here we show that the presence of apoptotic cells in monoclonal antibody-producing hybridoma cultures has markedly detrimental effects on antibody productivity. Removal of apoptotic hybridoma cells by macrophages at the time of seeding resulted in 100% improved antibody productivity that was, surprisingly to us, most pronounced late on in the cultures. Furthermore, we were able to recapitulate this effect using novel super-paramagnetic Dead-Cert Nanoparticles to remove non-viable cells simply and effectively at culture seeding. These results (1) provide direct evidence that apoptotic cells have a profound influence on their non-phagocytic neighbors in culture and (2) demonstrate the effectiveness of a simple dead-cell removal strategy for improving antibody manufacture in vitro.
Resumo:
N-hydroxylation of dapsone leads to the formation of the toxic hydroxylamines responsible for the clinical methaemoglobinaemia associated with dapsone therapy. Dapsone has been associated with decreased lifespan of erythrocytes, with consequences such as anaemia and morbidity in patients treated with dapsone for malaria. Here, we investigated how dapsone and/or its hydroxylamine derivative (DDS-NHOH) induced erythrocyte membrane alterations that could lead to premature cell removal.
Resumo:
The use of cationic liposomes as experimental adjuvants for subunit peptide of protein vaccines is well documented. Recently the cationic liposome CAF01, composed of dimethyldioctadecylammonium (DDA) and trehalose dibehenate (TDB), has entered Phase I clinical trials for use in a tuberculosis (TB) vaccine. CAF01 liposomes are a heterogeneous population with a mean vesicle size of 500 nm; a strong retention of antigen at the injection site and a Th1-biassed immune response are noted. The purpose of this study was to investigate whether CAF01 liposomes of significantly different vesicle sizes exhibited altered pharmacokinetics in vivo and cellular uptake with activation in vitro. Furthermore, the immune response against the TB antigen Ag85B-ESAT-6 was followed when various sized CAF01 liposomes were used as vaccine adjuvants. The results showed no differences in vaccine (liposome or antigen) draining from the injection site, however, significant differences in the movement of liposomes to the popliteal lymph node were noted. Liposome uptake by THP-1 vitamin D3 stimulated macrophage-like cells did not show a liposome size-dependent pattern of uptake. Finally, whilst there were no significant differences in the IgG1/2 regardless of the liposome size used as a delivery vehicle for Ag85B-ESAT-6, vesicle size has a size dependent effect on cell proliferation and IL-10 production with larger liposomes (in excess of 2 µm) promoting the highest proliferation and lowest IL-10 responses, yet vesicles of ~500 nm promoting higher IFN-? cytokine production from splenocytes and higher IL-1ß at the site of injection.