950 resultados para soil animal community ecology
Resumo:
The red deer (Cervus elaphus) is currently one of the most widespread and abundant wild ungulates in the Iberian Peninsula and is extremely important both ecologically, as a key species for the functioning of the ecosystems, and economically, as a major game species. In Iberia, red deer populations are subjected to different management systems that may affect the physical condition of the individuals, with further consequences for population dynamics. Studies investigating the effects of management practices and environmental conditions on the performance of red deer are still rare regarding Mediterranean ecosystems. Much of the knowledge concerning the ecology of red deer and the impact of management on its physical condition is based on studies conducted in northern and central regions of Europe, where climatological features and management practices differ from those observed in the Mediterranean areas of Iberia. Studies on a biogeographical scale can provide important insights into the relationships between species and a particular environment and contribute to the development of more targeted and appropriate management practices. The optimisation of sampling procedures and the fine-tuning of pre-existing analytical techniques are also fundamental to a more cost-effective monitoring and, therefore, are of enormous value to wildlife managers. In this context, the main aims of this thesis were: 1) to optimise the procedures used to assess the physical condition of red deer; and 2) to identify relevant management and environmental factors affecting the nutritional condition and stress physiology of red deer in the Mediterranean ecosystems of Iberia, as well as any potential interactions between those factors. Two studies with a methodological focus, presented in the first part of the thesis, demonstrated that the physical condition of red deer can be evaluated more simply, using more cost- and time-effective procedures than those traditionally used: i) it was shown that only one kidney and its associated fat is enough to assess nutritional condition in red deer; and ii) the feasibility of using near infrared spectroscopy to predict the concentrations of stress hormone metabolites was demonstrated using faeces of red deer for the first time. Subsequently, two large-scale observational studies, conducted in representative red deer populations found in Mediterranean Iberia, highlighted the importance of considering seasonal environmental variations and variables related to hunting management practices to better understand the nutritional and physiological ecology of red deer. High population densities had adverse effects on the nutritional condition of the deer and were associated with increased stress levels in natural populations without supplementary feeding. Massive hunting events involving the use of hounds were also identified as a potential source of chronic stress in red deer. The research presented in this thesis has clear implications regarding the management and monitoring of red deer populations in Mediterranean environments and is intended to help wildlife managers to implement more effective monitoring programmes and sustainable management practices.
Resumo:
Background: Anthropogenic disturbance of old-growth tropical forests increases the abundance of early successional tree species at the cost of late successional ones. Quantifying differences in terms of carbon allocation and the proportion of recently fixed carbon in soil CO2 efflux is crucial for addressing the carbon footprint of creeping degradation. Methodology: We compared the carbon allocation pattern of the late successional gymnosperm Podocarpus falcatus (Thunb.) Mirb. and the early successional (gap filling) angiosperm Croton macrostachyus Hochst. es Del. in an Ethiopian Afromontane forest by whole tree (CO2)-C-13 pulse labeling. Over a one-year period we monitored the temporal resolution of the label in the foliage, the phloem sap, the arbuscular mycorrhiza, and in soil-derived CO2. Further, we quantified the overall losses of assimilated C-13 with soil CO2 efflux. Principal Findings: C-13 in leaves of C. macrostachyus declined more rapidly with a larger size of a fast pool (64% vs. 50% of the assimilated carbon), having a shorter mean residence time (14 h vs. 55 h) as in leaves of P. falcatus. Phloem sap velocity was about 4 times higher for C. macrostachyus. Likewise, the label appeared earlier in the arbuscular mycorrhiza of C. macrostachyus and in the soil CO2 efflux as in case of P. falcatus (24 h vs. 72 h). Within one year soil CO2 efflux amounted to a loss of 32% of assimilated carbon for the gap filling tree and to 15% for the late successional one. Conclusions: Our results showed clear differences in carbon allocation patterns between tree species, although we caution that this experiment was unreplicated. A shift in tree species composition of tropical montane forests (e. g., by degradation) accelerates carbon allocation belowground and increases respiratory carbon losses by the autotrophic community. If ongoing disturbance keeps early successional species in dominance, the larger allocation to fast cycling compartments may deplete soil organic carbon in the long run.
Resumo:
Mangroves play an important role in carbon sequestration, but soil organic carbon (SOC) stocks differ between marine and estuarine mangroves, suggesting differing processes and drivers of SOC accumulation. Here, we compared undegraded and degraded marine and estuarine mangroves in a regional approach across the Indonesian archipelago for their SOC stocks and evaluated possible drivers imposed by nutrient limitations along the land-to-sea gradients. SOC stocks in natural marine mangroves (271–572 Mg ha-1 m-1 were much higher than under estuarine mangroves (100–315 Mg ha-1 m-1 with a further decrease caused by degradation to 80–132 Mg ha-1 m-1. Soils differed in C/N ratio (marine: 29–64; estuarine: 9–28), δ15N (marine: 0.6 to 0.7‰; estuarine: 2.5 to 7.2‰), and plant-available P (marine: 2.3–6.3 mg kg-1; estuarine: 0.16–1.8 mg kg-1). We found N and P supply of sea-oriented mangroves primarily met by dominating symbiotic N2 fixation from air and P import from sea, while mangroves on the landward gradient increasingly covered their demand in N and P from allochthonous sources and SOM recycling. Pioneer plants favored by degradation further increased nutrient recycling from soil resulting in smaller SOC stocks in the topsoil. These processes explained the differences in SOC stocks along the land-to-sea gradient in each mangrove type as well as the SOC stock differences observed between estuarine and marine mangrove ecosystems. This first large-scale evaluation of drivers of SOC stocks under mangroves thus suggests a continuum in mangrove functioning across scales and ecotypes and additionally provides viable proxies for carbon stock estimations in PES or REDD schemes.
Resumo:
The results reported on were from a monitoring survey No. 9 undertaken between 9th and 12th September 2011 during construction period of the Bujagali Hydropower Project (BHPP). Two pre-construction, baseline surveys in April 2000 and April 2006 were conducted and so far, during construction phase of the project, eight monitoring surveys have been undertaken i.e. in September 2007, April 2008, April 2009, October 2009, April 2010, September 2010, April 2011 and the present one, in September 2011. Since 2009 biannual monitoring surveys have been conducted at an upstream and a downstream transect of the BHPP with emphasis on the following aspects: water quality determinants biology and ecology of fishes and food webs fish stock and fish catch including economic aspects of catch and sanitation/vector studies (bilharzias and river blindness)in addition to the above mentioned studies, a soil pH survey was undertaken on 15th October 2011 in the area behind the reservoir whose filling started a week earlier. The findings of pH status in the catchment of the dam are also contained in this report.
Resumo:
The microbial spoilage of meat and seafood products with short shelf lives is responsible for a significant amount of food waste. Food spoilage is a very heterogeneous process, involving the growth of various, poorly characterized bacterial communities. In this study, we conducted 16S ribosomal RNA gene pyrosequencing on 160 samples of fresh and spoiled foods to comparatively explore the bacterial communities associated with four meat products and four seafood products that are among the most consumed food items in Europe. We show that fresh products are contaminated in part by a microbiota similar to that found on the skin and in the gut of animals. However, this animal-derived microbiota was less prevalent and less abundant than a core microbiota, psychrotrophic in nature, mainly originated from the environment (water reservoirs). We clearly show that this core community found on meat and seafood products is the main reservoir of spoilage bacteria. We also show that storage conditions exert strong selective pressure on the initial microbiota: alpha diversity in fresh samples was 189 +/- 58 operational taxonomic units (OTUs) but dropped to 27 +/- 12 OTUs in spoiled samples. The OTU assemblage associated with spoilage was shaped by low storage temperatures, packaging and the nutritional value of the food matrix itself. These factors presumably act in tandem without any hierarchical pattern. Most notably, we were also able to identify putative new clades of dominant, previously undescribed bacteria occurring on spoiled seafood, a finding that emphasizes the importance of using culture-independent methods when studying food microbiota.