970 resultados para small-signal angular stability
Resumo:
In this work a forest fire detection solution using small autonomous aerial vehicles is proposed. The FALCOS unmanned aerial vehicle developed for remote-monitoring purposes is described. This is a small size UAV with onboard vision processing and autonomous flight capabilities. A set of custom developed navigation sensors was developed for the vehicle. Fire detection is performed through the use of low cost digital cameras and near-infrared sensors. Test results for navigation and ignition detection in real scenario are presented.
Resumo:
It is well-known that ROVs require human intervention to guarantee the success of their assignment, as well as the equipment safety. However, as its teleoperation is quite complex to perform, there is a need for assisted teleoperation. This study aims to take on this challenge by developing vision-based assisted teleoperation maneuvers, since a standard camera is present in any ROV. The proposed approach is a visual servoing solution, that allows the user to select between several standard image processing methods and is applied to a 3-DOF ROV. The most interesting characteristic of the presented system is the exclusive use of the camera data to improve the teleoperation of an underactuated ROV. It is demonstrated through the comparison and evaluation of standard implementations of different vision methods and the execution of simple maneuvers to acquire experimental results, that the teleoperation of a small ROV can be drastically improved without the need to install additional sensors.
Resumo:
A levitação magnética tem sido um tema bastante investigado sobretudo devido à sua utilização em sistemas ferroviários de transportes. É o método ideal quando existe a necessidade em aplicações de restringir do contacto físico, ou a conveniência, em termos energéticos, de eliminar o atrito. O princípio de funcionamento é simples, um eletroíman cria uma força sobre um objeto ferromagnético que contraria a gravidade. Contudo um sistema de levitação por atração é instável e não linear, o que significa a necessidade de implementar um controlador para satisfazer as características de estabilidade desejadas. Ao longo deste projeto serão descritos os procedimentos teóricos e práticos que foram tomados na criação de um sistema de levitação eletromagnética. Desde a conceção física do sistema, como escolha do sensor, condicionamento de sinal ou construção do eletroíman, até aos procedimentos matemáticos que permitiram a modelação do sistema e criação de controladores. Os controladores clássicos, como o PID ou em avanço de fase, foram projetados através da técnica do Lugar Geométrico de Raízes. No projeto do controlador difuso, pelo contrário não se fez uso da modelação do sistema ou de qualquer relação matemática entre as variáveis. A utilização desta técnica de controlo destacou-se pela usa simplicidade e rapidez de implementação, fornecendo um bom desempenho ao sistema. Na parte final do relatório os resultados obtidos pelos diferentes métodos de controlo são analisados e apresentadas as respetivas conclusões. Estes resultados revelam que para este sistema, relativamente aos outros métodos, o controlador difuso apresenta o melhor desempenho tanto ao nível da resposta transitória, como em regime permanente.
Resumo:
The Electromyography (EMG) is an important tool for gait analyzes and disorders diagnoses. Traditional methods involve equipment that can disturb the analyses, being gradually substituted by different approaches, like wearable and wireless systems. The cable replacement for autonomous systems demands for technologies capable of meeting the power constraints. This work presents the development of an EMG and kinematic data capture wireless module, designed taking into account power consumption issues. This module captures and converts the analog myoeletric signal to digital, synchronously with the capture of kinetic information. Both data are time multiplexed and sent to a PC via Bluetooth link. The work carried out comprised the development of the hardware, the firmware and a graphical interface running in an external PC. The hardware was developed using the PIC18F14K22, a low power family of microcontrollers. The link was established via Bluetooth, a protocol designed for low power communication. An application was also developed to recover and trace the signal to a Graphic User Interface (GUI), coordinating the message exchange with the firmware. Results were obtained which allowed validating the conceived system in static and with the subject performing short movements. Although it was not possible to perform the tests within more dynamic movements, it is shown that it is possible to capture, transmit and display the captured data as expected. Some suggestions to improve the system performance also were made.
Resumo:
Based on a case of gastric antral vascular ectasia (watermelon stomach) that was associated with hemorrhagic pericarditis, small cell lung carcinoma with mediastinal lymph node metastases and a synchronous squamous cell carcinoma of the base of the tongue, the authors made a review of the clinical, endoscopic and histopathological aspects of this type of gastropathy, and its association with other diseases, and of the results of its endoscopic therapy. The causes of hemorrhagic pericarditis are considered, emphasizing the necessity to know if the effusion has a malignant etiology. To the best of our knowledge the association of watermelon stomach to small cell lung carcinoma and squamous cell carcinoma of the base of the tongue has not yet been described. Extensive metastases to mediastal lymph nodes are common to small cell lung carcinoma.
Resumo:
Background: Anticipatory postural adjustments during gait initiation have an important role in postural stability but also in gait performance. However, these first phase mechanisms of gait initiation have received little attention, particularly in subcortical post-stroke subjects, where bilateral postural control pathways can be impaired. This study aims to evaluate ankle anticipatory postural adjustments during gait initiation in chronic post-stroke subjects with lesion in the territory of middle cerebral artery. Methods: Eleven subjects with post-stroke hemiparesis with the ability to walk independently and twelve healthy controls participated in this study. Bilateral electromyographic activity of tibialis anterior, soleus and medial gastrocnemius was collected during gait initiation to assess the muscle onset timing, period of activation/deactivation and magnitude of muscle activity during postural phase of gait initiation. This phase was identified through centre of pressure signal. Findings: Post-stroke group presented only half of the tibialis anterior relative magnitude observed in healthy subjects in contralesional limb (t=2.38, p=0.027) and decreased soleus deactivation period (contralesional limb, t=2.25, p=0.04; ipsilesional limb, t=3.67, p=0.003) as well its onset timing (contralesional limb, t=3.2. p=0.005; ipsilesional limb, t=2.88, p=0.033) in both limbs. A decreased centre of pressure displacement backward (t=3.45, p=0.002) and toward the first swing limb (t=3.29, p=0.004) was observed in post-stroke subjects. Interpretation: These findings indicate that chronic post-stroke subjects with lesion at middle cerebral artery territory present dysfunction in ankle anticipatory postural adjustments in both limbs during gait initiation.
Resumo:
The Container Loading Problem (CLP) literature has traditionally evaluated the dynamic stability of cargo by applying two metrics to box arrangements: the mean number of boxes supporting the items excluding those placed directly on the floor (M1) and the percentage of boxes with insufficient lateral support (M2). However, these metrics, that aim to be proxies for cargo stability during transportation, fail to translate real-world cargo conditions of dynamic stability. In this paper two new performance indicators are proposed to evaluate the dynamic stability of cargo arrangements: the number of fallen boxes (NFB) and the number of boxes within the Damage Boundary Curve fragility test (NB_DBC). Using 1500 solutions for well-known problem instances found in the literature, these new performance indicators are evaluated using a physics simulation tool (StableCargo), replacing the real-world transportation by a truck with a simulation of the dynamic behaviour of container loading arrangements. Two new dynamic stability metrics that can be integrated within any container loading algorithm are also proposed. The metrics are analytical models of the proposed stability performance indicators, computed by multiple linear regression. Pearson’s r correlation coefficient was used as an evaluation parameter for the performance of the models. The extensive computational results show that the proposed metrics are better proxies for dynamic stability in the CLP than the previous widely used metrics.
Resumo:
In this paper we study several natural and man-made complex phenomena in the perspective of dynamical systems. For each class of phenomena, the system outputs are time-series records obtained in identical conditions. The time-series are viewed as manifestations of the system behavior and are processed for analyzing the system dynamics. First, we use the Fourier transform to process the data and we approximate the amplitude spectra by means of power law functions. We interpret the power law parameters as a phenomenological signature of the system dynamics. Second, we adopt the techniques of non-hierarchical clustering and multidimensional scaling to visualize hidden relationships between the complex phenomena. Third, we propose a vector field based analogy to interpret the patterns unveiled by the PL parameters.
Resumo:
In the Yucatan Peninsula of Mexico, 95% of the human cases of Cutaneous Leishmaniasis are caused by Leishmania (Leishmania) mexicana with an incidence rate of 5.08 per 100,000 inhabitants. Transmission is limited to the winter months (November to March). One study on wild rodents has incriminated Ototylomys phyllotis and Peromyscus yucatanicus as primary reservoirs of L. (L.) mexicana in the focus of La Libertad, Campeche. In the present study, the prevalence of both infection and disease caused by L. (L.) mexicana in small terrestrial mammals were documented during five transmission seasons (1994-2004) in five foci of Leishmaniasis in the state of Campeche. Foci separated by only 100 km, with similar relative abundances of small mammals, were found to differ significantly in their prevalence of both symptoms and infection. Transmission rates and reservoir species seemed to change in space as well as in time which limited the implementation of effective control measures of the disease even in a small endemic area such as the south of the Yucatan Peninsula.
Resumo:
Dissertation to obtain a Master Degree in Biotechnology
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
BACKGROUND: Wireless capsule endoscopy has been introduced as an innovative, non-invasive diagnostic technique for evaluation of the gastrointestinal tract, reaching places where conventional endoscopy is unable to. However, the output of this technique is an 8 hours video, whose analysis by the expert physician is very time consuming. Thus, a computer assisted diagnosis tool to help the physicians to evaluate CE exams faster and more accurately is an important technical challenge and an excellent economical opportunity. METHOD: The set of features proposed in this paper to code textural information is based on statistical modeling of second order textural measures extracted from co-occurrence matrices. To cope with both joint and marginal non-Gaussianity of second order textural measures, higher order moments are used. These statistical moments are taken from the two-dimensional color-scale feature space, where two different scales are considered. Second and higher order moments of textural measures are computed from the co-occurrence matrices computed from images synthesized by the inverse wavelet transform of the wavelet transform containing only the selected scales for the three color channels. The dimensionality of the data is reduced by using Principal Component Analysis. RESULTS: The proposed textural features are then used as the input of a classifier based on artificial neural networks. Classification performances of 93.1% specificity and 93.9% sensitivity are achieved on real data. These promising results open the path towards a deeper study regarding the applicability of this algorithm in computer aided diagnosis systems to assist physicians in their clinical practice.