987 resultados para silicoaluminophosphate molecular sieve
Resumo:
In the recent past, there have been enormous efforts to understand effect of drugs on human body. Prior to understand the effect of drugs on human body most of the experiments are carried out on cells or model organisms. Here we present our study on the effect of chemotherapeutic drugs on cancer cells and the acetaminophen (APAP) induced hepatotoxicity in mouse model. Histone deacetylase inhibitors (HDIs) have attracted attention as potential drug molecules for the treatment of cancer. These are the chemotherapeutic drugs which have indirect mechanistic action against cancer cells via acting against histone deacetylases (HDAC). It has been known that different HDAC enzymes are over-expressed in various types of cancers for example; HDAC1 is over expressed in prostate, gastric and breast carcinomas. Therefore, in order to optimise chemotherapy, it is important to determine the efficacy of various classes of HDAC inhibitor drugs against variety of over-expressed HDAC enzymes. In the present study, FTIR microspectroscopy has been employed to predict the acetylation and propionylation brought in by HDIs. The liver plays an important role in cellular metabolism and is highly susceptible to drug toxicity. APAP which is an analgesic and antipyretic drug is extensively used for therapeutic purposes and has become the most common cause of acute liver failure (ALF). In the current study, we have focused to understand APAP induced hepatotoxicity using FTIR microspectroscopy. In the IR spectrum the bands corresponding to glycogen, ester group and were found to be suitable markers to predict liver injury at early time point (0.5hr) due to APAP both in tissue and serum in comparison to standard biochemical assays. Our studies show the potential of FTIR spectroscopy as a rapid, sensitive and non invasive detection technique for future clinical diagnosis.
Resumo:
Background: India has the third largest HIV-1 epidemic with 2.4 million infected individuals. Molecular epidemiological analysis has identified the predominance of HIV-1 subtype C (HIV-1C). However, the previous reports have been limited by sample size, and uneven geographical distribution. The introduction of HIV-1C in India remains uncertain due to this lack of structured studies. To fill the gap, we characterised the distribution pattern of HIV-1 subtypes in India based on data collection from nationwide clinical cohorts between 2007 and 2011. We also reconstructed the time to the most recent common ancestor (tMRCA) of the predominant HIV-1C strains. Methodology/Principal Findings: Blood samples were collected from 168 HIV-1 seropositive subjects from 7 different states. HIV-1 subtypes were determined using two or three genes, gag, pol, and env using several methods. Bayesian coalescent-based approach was used to reconstruct the time of introduction and population growth patterns of the Indian HIV-1C. For the first time, a high prevalence (10%) of unique recombinant forms (BC and A1C) was observed when two or three genes were used instead of one gene (p<0.01; p = 0.02, respectively). The tMRCA of Indian HIV-1C was estimated using the three viral genes, ranged from 1967 (gag) to 1974 (env). Pol-gene analysis was considered to provide the most reliable estimate 1971, (95% CI: 1965-1976)]. The population growth pattern revealed an initial slow growth phase in the mid-1970s, an exponential phase through the 1980s, and a stationary phase since the early 1990s. Conclusions/Significance: The Indian HIV-1C epidemic originated around 40 years ago from a single or few genetically related African lineages, and since then largely evolved independently. The effective population size in the country has been broadly stable since the 1990s. The evolving viral epidemic, as indicated by the increase of recombinant strains, warrants a need for continued molecular surveillance to guide efficient disease intervention strategies.
Resumo:
The van der Waals and Platteuw (vdVVP) theory has been successfully used to model the thermodynamics of gas hydrates. However, earlier studies have shown that this could be due to the presence of a large number of adjustable parameters whose values are obtained through regression with experimental data. To test this assertion, we carry out a systematic and rigorous study of the performance of various models of vdWP theory that have been proposed over the years. The hydrate phase equilibrium data used for this study is obtained from Monte Carlo molecular simulations of methane hydrates. The parameters of the vdWP theory are regressed from this equilibrium data and compared with their true values obtained directly from simulations. This comparison reveals that (i) methane-water interactions beyond the first cage and methane-methane interactions make a significant contribution to the partition function and thus cannot be neglected, (ii) the rigorous Monte Carlo integration should be used to evaluate the Langmuir constant instead of the spherical smoothed cell approximation, (iii) the parameter values describing the methane-water interactions cannot be correctly regressed from the equilibrium data using the vdVVP theory in its present form, (iv) the regressed empty hydrate property values closely match their true values irrespective of the level of rigor in the theory, and (v) the flexibility of the water lattice forming the hydrate phase needs to be incorporated in the vdWP theory. Since methane is among the simplest of hydrate forming molecules, the conclusions from this study should also hold true for more complicated hydrate guest molecules.
Resumo:
High molecular weight polyaniline (PANI) was synthesized by a combined procedure incorporating various synthesis methods. Temperature and open circuit potential of the reaction mixture were collected to monitor the reaction progress. The polymer is characterized by various techniques including gel permeation chromatography, dynamic light scattering, infrared spectroscopy, solid-state nuclear magnetic resonance, and differential scanning calorimetry for elucidating the molecular architecture obtained by this method. As-synthesized PANI was found to possess high molecular weight, reduced branching, reduced cross-linking, and to predominantly consist of linear polymer chains. This polymer was also found to be more stable in solution form. JV characteristics of as-synthesized PANI films indicate a high current density which is due to increased free pathways and less traps for the charge transport to occur in PANI films. POLYM. ENG. SCI., 2012. (C) 2012 Society of Plastics Engineers
Resumo:
4-Alkoxy benzoic acids belong to an important class of thermotropic liquid crystals that are structurally simple and often used as starting materials for many novel mesogens. 4-Hexyloxybenzoic acid (HBA) is a homologue of the same series and exhibits an enantiotropic nematic phase. As this molecule could serve as an ideal model compound, high resolution C-13 NMR studies of HEA in solution, solid, and liquid crystalline phases have been undertaken. In the solid state, two-dimensional separation of undistorted powder patterns by effortless recoupling (2D SUPER) experiments have been carried out to estimate the magnitude of the components of the chemical shift anisotropy (GSA) tensor of all the aromatic carbons. These values have been used subsequently for calculating the orientational order parameters in the liquid crystalline phase. The GSA values computed by density functional theory (DFT) calculations showed good agreement with the 2D SUPER values. Additionally, C-13-H-1 dipolar couplings in the nematic phase have been determined by separated local field (SLF) spectroscopy at various temperatures and were used for computing the order parameters, which compared well with those calculated by using the chemical shifts. It is anticipated that the CSA values determined for MBA would be useful for the assignment of carbon chemical shifts and for the study of order and dynamics of structurally similar novel mesogens in their nematic phases.
Resumo:
Three new nanoscopic trigonal prisms, (tmen)6Pd6(H2L)3](NO3)12 (1), (Meen)6Pd6(H2L)3](NO3)12 (2), and (2,2'-bipy)6Pd6(H2L)3](NO3)12 (3), have been synthesized in excellent yields through single-step metalligand-coordination-driven self-assembly using 5,10,15,20-tetrakis(3-pyridyl)porphyrin (H2L) as a donor and cis-blocked PdII 90 degrees acceptors. These complexes were fully characterized by spectroscopic studies and single-crystal X-ray diffraction. All of these barrels quantitatively bind ZnII ions in the N4 pockets of the porphyrin walls at room temperature. Their corresponding zinc-embedded complexes, (tmen)6Pd6(ZnL)3](NO3)12 (1?a), (Meen)6Pd6(ZnL)3](NO3)12 (2?a), and (2,2'-bipy)6Pd6(ZnL)3](NO3)12 (3?a), were synthesized under ambient conditions by the post-synthetic binding of ZnII ions into the H2N4 pockets of the porphyrin walls of these complexes. These zinc-embedded complexes were characterized by electronic absorption, fluorescence emission, 1H NMR spectroscopy, as well as elemental analysis. Complexes 13 exhibited considerable microporosity in their solid state. Complex 1 was an efficient adsorbent for nitrogen gas and EtOH, MeOH, and water vapors.
Resumo:
The present work explores the electrical transport and UV photoresponse properties of GaN nanodots (NDs) grown by molecular beam epitaxy (MBE). Single-crystalline wurtzite structure of GaN NDs is verified by X-ray diffraction and transmission electron microscopy (TEM). The interdigitated electrode pattern was created and current-voltage (I-V) characteristics of GaN NDs were studied in a metal-semiconductor-metal configuration. Dark I-V characteristics of lateral grown GaN NDs obeyed the Frenkel-Poole emission model, and the UV response of the device was stable and reproducible with on/off. The responsivity of the detectors is found to be 330 A/W with an external quantum efficiency of 1100%. (C) 2012 The Japan Society of Applied Physics
Resumo:
Nanoindentation and scratch experiments on 1:1 donor-acceptor complexes, 1 and 2, of 1,2,4,5-tetracyanobenzene with pyrene and phenanthrene, respectively, reveal long-range molecular layer gliding and large interaction anisotropy. Due to the layered arrangements in these crystals, these experiments that apply stress in particular directions result in the breaking of interlayer interactions, thus allowing molecular sheets to glide over one another with ease. Complex 1 has a layered crystal packing wherein the layers are 68° skew under the (002) face and the interlayer space is stabilized by van der Waals interactions. Upon indenting this surface with a Berkovich tip, pile-up of material was observed on just one side of the indenter due to the close angular alignment of the layers with the half angle of the indenter tip (65.35°). The interfacial differences in the elastic modulus (21 ) and hardness (16 ) demonstrate the anisotropic nature of crystal packing. In 2, the molecular stacks are arranged in a staggered manner; there is no layer arrangement, and the interlayer stabilization involves C-H�N hydrogen bonds and ��� interactions. This results in a higher modulus (20 ) for (020) as compared to (001), although the anisotropy in hardness is minimal (4 ). The anisotropy within a face was analyzed using AFM image scans and the coefficient of friction of four orthogonal nanoscratches on the cleavage planes of 1 and 2. A higher friction coefficient was obtained for 2 as compared to 1 even in the cleavage direction due to the presence of hydrogen bonds in the interlayer region making the tip movement more hindered. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Flap dynamics of HIV-1 protease (HIV-pr) controls the entry of inhibitors and substrates to the active site. Dynamical models from previous simulations are not all consistent with each other and not all are supported by the NMR results. In the present work, the er effect of force field on the dynamics of HIV-pr is investigated by MD simulations using three AMBER force fields ff99, ff99SB, and ff03. The generalized order parameters for amide backbone are calculated from the three force fields and compared with the NMR S2 values. We found that the ff99SB and ff03 force field calculated order parameters agree reasonably well with the NMR S2 values, whereas ff99 calculated values deviate most from the NMR order parameters. Stereochemical geometry of protein models from each force field also agrees well with the remarks from NMR S2 values. However, between ff99SB and ff03, there are several differences, most notably in the loop regions. It is found that these loops are, in general, more flexible in the ff03 force field. This results in a larger active site cavity in the simulation with the ff03 force field. The effect of this difference in computer-aided drug design against flexible receptors is discussed.
Resumo:
The structure of the hydrogen bond network is a key element for understanding water's thermodynamic and kinetic anomalies. While ambient water is strongly believed to be a uniform, continuous hydrogen-bonded liquid, there is growing consensus that supercooled water is better described in terms of distinct domains with either a low-density ice-like structure or a high-density disordered one. We evidenced two distinct rotational mobilities of probe molecules in interstitial supercooled water of polycrystalline ice Banerjee D, et al. (2009) ESR evidence for 2 coexisting liquid phases in deeply supercooled bulk water. Proc Natl Acad Sci USA 106: 11448-11453]. Here we show that, by increasing the confinement of interstitial water, the mobility of probe molecules, surprisingly, increases. We argue that loose confinement allows the presence of ice-like regions in supercooled water, whereas a tighter confinement yields the suppression of this ordered fraction and leads to higher fluidity. Compelling evidence of the presence of ice-like regions is provided by the probe orientational entropy barrier which is set, through hydrogen bonding, by the configuration of the surrounding water molecules and yields a direct measure of the configurational entropy of the same. We find that, under loose confinement of supercooled water, the entropy barrier surmounted by the slower probe fraction exceeds that of equilibrium water by the melting entropy of ice, whereas no increase of the barrier is observed under stronger confinement. The lower limit of metastability of supercooled water is discussed.
Resumo:
The discrepancy between the X-ray and NMR structures of Mycobacterium tuberculosis peptidyl-tRNA hydrolase in relation to the functionally important plasticity of the molecule led to molecular dynamics simulations. The X-ray and the NMR studies along with the simulations indicated an inverse correlation between crowding and molecular volume. A detailed comparison of proteins for which X-ray and the NMR structures appears to confirm this correlation. In consonance with the reported results of the investigations in cellular compartments and aqueous solution, the comparison indicates that the crowding results in compaction of the molecule as well as change in its shape, which could specifically involve regions of the molecule important in function. Crowding could thus influence the action of proteins through modulation of the functionally important plasticity of the molecule. Selvaraj M, Ahmad R, Varshney U and Vijayan M 2012 Crowding, molecular volume and plasticity: An assessment involving crystallography, NMR and simulations. J. Biosci. 37 953-963] DOI 10.1007/s12038-012-9276-5
Resumo:
Facile synthesis of two new dimesitylboryl appended BODIPYs is reported. The two dyads have similar fluorescent chromophores but differ in their molecular conformations. They exhibit dual fluorescence, intramolecular energy transfer between boryl and BODIPY chromophores and different fluorescence responses (emission enhancement and quenching) upon fluoride binding.
Resumo:
Background: Interaction of non-structural protein 5A (NS5A) of Hepatitis C virus (HCV) with human kinases namely, casein kinase 1 alpha (ck1 alpha) and protein kinase R (PKR) have different functional implications such as regulation of viral replication and evasion of interferon induced immune response respectively. Understanding the structural and molecular basis of interactions of the viral protein with two different human kinases can be useful in developing strategies for treatment against HCV. Results: Serine 232 of NS5A is known to be phosphorylated by human ck1 alpha. A structural model of NS5A peptide containing phosphoacceptor residue Serine 232 bound to ck1 alpha has been generated using the known 3-D structures of kinase-peptide complexes. The substrate interacting residues in ck1 alpha has been identified from the model and these are found to be conserved well in the ck1 family. ck1 alpha - substrate peptide complex has also been used to understand the structural basis of association between ck1 alpha and its other viral stress induced substrate, tumour suppressor p53 transactivation domain which has a crystal structure available. Interaction of NS5A with another human kinase PKR is primarily genotype specific. NS5A from genotype 1b has been shown to interact and inhibit PKR whereas NS5A from genotype 2a/3a are unable to bind and inhibit PKR efficiently. This is one of the main reasons for the varied response to interferon therapy in HCV patients across different genotypes. Using PKR crystal structure, sequence alignment and evolutionary trace analysis some of the critical residues responsible for the interaction of NS5A 1b with PKR have been identified. Conclusions: The substrate interacting residues in ck1 alpha have been identified using the structural model of kinase substrate peptide. The PKR interacting NS5A 1b residues have also been predicted using PKR crystal structure, NS5A sequence analysis along with known experimental results. Functional significance and nature of interaction of interferon sensitivity determining region and variable region 3 of NS5A in different genotypes with PKR which was experimentally shown are also supported by the findings of evolutionary trace analysis. Designing inhibitors to prevent this interaction could enable the HCV genotype 1 infected patients respond well to interferon therapy.
Resumo:
This brief account highlights the notable findings of our investigation into the supramolecular chemistry of conformationally locked polycyclitols in the solid state. The study was aimed at analyzing the crystal packing and unraveling the modalities of non-covalent interactions (particularly, intramolecular vis-a-vis intermolecular OH center dot center dot center dot O hydrogen bonds) in polyols. The know-how obtained thereof, was successfully utilized to engineer self-assemblies of designer polycyclitols, having hydrogen bond donors and acceptors fettered onto a trans-decalin scaffold. The results seek to draw particular attention to the intrinsic attribute of this rigid carbocyclic framework to lock functional groups into spatially invariant positions and bring potential intramolecular hydrogen bonding partners into favorable interaction geometry to engender predictability in the self-assembly patterns.