983 resultados para ship waves
Resumo:
by J. M. Rumshisky. [Arr. by M. Joseph]
Resumo:
We report on magnetic field measurements made in the innermost coma of 67P/Churyumov-Gerasimenko in its low-activity state. Quasi-coherent, large-amplitude (δ B/B ~ 1), compressional magnetic field oscillations at ~ 40 mHz dominate the immediate plasma environment of the nucleus. This differs from previously studied cometary interaction regions where waves at the cometary ion gyro-frequencies are the main feature. Thus classical pickup-ion-driven instabilities are unable to explain the observations. We propose a cross-field current instability associated with newborn cometary ion currents as a possible source mechanism.
Resumo:
Despite the many technological innovations that had for some time contributed to a significant reduction of global travel times, intercontinental ship passages in the late nineteenth century were no quick affair. Depending on the route, such journeys could last between a few weeks and several months. During this time, crew and passengers shared the narrow space of the ship—largely isolated from the rest of the world and basically suspended between origin and destination. On many long-distance steamers, the production and consumption of ship newspapers became one possible means of whiling away the time in transit for the passengers. In this article, we seek to demonstrate how these extraordinary publications can serve as lenses not only on shipboard life but actually on historical actors of globalisation in a more general context. First, we seek to highlight why and how ship newspapers played an important role in the shaping of the peculiar social space of the passenger ship. We will then give a brief overview of the context in which these newspapers were produced and what kind of news they contained. In a third step, we will introduce two brief examples of topics discussed in ship newspapers and outline possible fields of research on which ship newspapers will be able to shed new light.
Resumo:
The Alpine region is warming fast, and concurrently, the frequency and intensity of climate extremes are increasing. It is currently unclear whether alpine ecosystems are sensitive or resistant to such extremes. We subjected Swiss alpine grassland communities to heat waves with varying intensity by transplanting monoliths to four different elevations (2440–660 m above sea level) for 17 d. Half of these were regularly irrigated while the other half were deprived of irrigation to additionally induce a drought at each site. Heat waves had no significant impacts on fluorescence (Fv/Fm, a stress indicator), senescence and aboveground productivity if irrigation was provided. However, when heat waves coincided with drought, the plants showed clear signs of stress, resulting in vegetation browning and reduced phytomass production. This likely resulted from direct drought effects, but also, as measurements of stomatal conductance and canopy temperatures suggest, from increased high-temperature stress as water scarcity decreased heat mitigation through transpiration. The immediate responses to heat waves (with or without droughts) recorded in these alpine grasslands were similar to those observed in the more extensively studied grasslands from temperate climates. Responses following climate extremes may differ in alpine environments, however, because the short growing season likely constrains recovery.
Resumo:
[Gertrude Ward]. With illustrations by Lilian Bell & Alice B. Woodward
Resumo:
This paper presents the morpho-sedimentary characterization and interpretations of the assemblage of landforms of the East Greenland continental slope and Greenland Basin, based on swath bathymetry and sub-bottom TOPAS profiles. The interpretation of landforms reveals the glacial influence on recent sedimentary processes shaping the seafloor, including mass-wasting and turbidite flows. The timing of landform development points to a predominantly glacial origin of the sediment supplied to the continental margin, supporting the scenario of a Greenland Ice Sheet extending across the continental shelf, or even to the shelf-edge, during the Last Glacial Maximum (LGM). Major sedimentary processes along the central section of the eastern Greenland Continental Slope, the Norske margin, suggest a relatively high glacial sediment input during the LGM that, probably triggered by tectonic activity, led to the development of scarps and channels on the slope and debris flows on the continental rise. The more southerly Kejser Franz Josef margin has small-scale mass-wasting deposits and an extensive turbidite system that developed in relation to both channelised and unconfined turbidity flows which transferred sediments into the deep Greenland Basin.