1000 resultados para semi-insulating InP


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Um dos pré-requisitos para o sucesso na seleção e implantação de áreas de pesquisa é o conhecimento preciso da distribuição dos solos e de seus atributos na paisagem. Isso pode ser obtido com o levantamento e mapeamento pedológico convencional e/ou através de técnicas de mapeamento digital de solos (MDS). Este trabalho apresenta os solos identificados no Parque Estadual da Mata Seca (PEMS), localizado no município de Manga, região norte do Estado de Minas Gerais. É parte integrante de um projeto maior, cujo objetivo é explorar novas técnicas de MDS em pequenas extensões territoriais, avaliar e validar seus produtos e estabelecer um protocolo de procedimentos para tal. Abrangendo a extensão de 10.281,44 ha, o PEMS tem sua geologia associada a coberturas cenozóicas derivadas de: (a) rochas pelíticocarbonáticas que compõem o Grupo Bambuí, de idade proterozóica, (b) arenitos cretáceos do Grupo Urucuia e, (c) depósitos quarternários resultantes do retrabalhamento do rio São Francisco. Os tipos e diversidade de material de origem foram os fatores preponderantes na formação e distribuição dos solos e na sua relação com os demais elementos formadores da paisagem local. Em termos gerais, a seguinte relação solo-paisagem pode ser observada na área: Latossolos Amarelos e Vermelho-Amarelos distróficos e de textura média ocupam os platôs (chapada) de relevo predominantemente plano, situados nas cotas mais elevadas do PEMS e sob domínio das coberturas relacionadas aos arenitos do Grupo Urucuia. A vegetação de Carrasco é exclusiva e marcante dessa paisagem, seja observando-a in loco, seja por meio de imagens de sensores remotos. Há uma faixa transicional entre esses domínios e aqueles situados em cotas ligeiramente inferiores, que são influenciados exclusivamente pelas rochas calcárias. A existência de eutrofismo associado à textura média em Latossolos Vermelho-Amarelos, Vermelhos, Chernossolos e Cambissolos (latossólicos), bem como a vegetação de Caatinga Arbórea Densa (de médio porte) são evidências do caráter transicional. As paisagens sob domínio das rochas pelítico-carbonáticas em que se desenvolve a Floresta Estacional Decidual Densa de alto porte (Mata Seca) são de maior extensão e complexidade na área. Nelas, o relevo e a proximidade do material de origem exercem ação modificadora na formação dos solos. As seguintes subordens taxonômicas foram observadas nesse domínio fisiográfico:Cambissolos Háplicos, Latossolos Vermelhos e Vermelhos-Amarelos, Chernossolos Háplicos e Argilúvicos, Vertissolos Háplicos, Plintossolos Pétricos, Gleissolos Háplicos e Melânicos. Dentre estas, os Latossolos Vermelho- Amarelos e Vermelhos juntamente aos Cambissolos Háplicos dominam em extensão, distribuindo-se em aproximadamente 87,0% das áreas sob influência calcária. Finalmente, nos depósitos quaternários do rio São Francisco, em relevo plano e sob Floresta Tropical Pluvial Perenifólia, foram mapeados Cambissolos Flúvicos e Neossolos Flúvicos em condições de boa drenagem, enquanto os Gleissolos Háplicos ocorrem nas áreas deprimidas, permanente ou temporariamente inundadas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

T.Boongoen and Q. Shen. Semi-Supervised OWA Aggregation for Link-Based Similarity Evaluation and Alias Detection. Proceedings of the 18th International Conference on Fuzzy Systems (FUZZ-IEEE'09), pp. 288-293, 2009. Sponsorship: EPSRC

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Iantchenko, A.; Sj?strand, J.; Zworski, M., (2002) 'Birkhoff normal forms in semi-classical inverse problems', Mathematical Research Letters 9(3) pp.337-362 RAE2008

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Douglas, Robert; Cullen, M.J.P.; Roulston, I.; Sewell, M.J., (2005) 'Generalized semi-geostrophic theory on a sphere', Journal of Fluid Mechanics 531 pp.123-157 RAE2008

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Various restrictions on the terms allowed for substitution give rise to different cases of semi-unification. Semi-unification on finite and regular terms has already been considered in the literature. We introduce a general case of semi-unification where substitutions are allowed on non-regular terms, and we prove the equivalence of this general case to a well-known undecidable data base dependency problem, thus establishing the undecidability of general semi-unification. We present a unified way of looking at the various problems of semi-unification. We give some properties that are common to all the cases of semi-unification. We also the principality property and the solution set for those problems. We prove that semi-unification on general terms has the principality property. Finally, we present a recursive inseparability result between semi-unification on regular terms and semi-unification on general terms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When porous InP is anodically formed in KOH electrolytes, a thin layer ~40 nm in thickness, close to the surface, appears to be unmodified. We have investigated the earlier stages of the anodic formation of porous InP in 5 mol dm-3 KOH. TEM clearly shows individual porous domains which appear triangular in cross-section and square in plan view. The crosssections also show that the domains are separated from the surface by a ~40 nm thick, dense InP layer. It is concluded that the porous domains have a square-based pyramidal shape and that each one develops from an individual surface pit which forms a channel through this near-surface layer. We suggest that the pyramidal structure arises as a result of preferential pore propagation along the <100> directions. AFM measurements show that the density of surface pits increases with time. Each of these pits acts as a source for a pyramidal porous domain, and these domains eventually form a continuous porous layer. This implies that the development of porous domains beneath the surface is also progressive in nature. Evidence for this was seen in plan view TEM images. Merging of domains continues to occur at potentials more anodic than the peak potential, where the current is observed to decrease. When the domains grow, the current density increases correspondingly. Eventually, domains meet, the interface between the porous and bulk InP becomes relatively flat and its total effective surface area decreases resulting in a decrease in the current density. Quantitative models of this process are being developed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ever increasing demand for broadband communications requires sophisticated devices. Photonic integrated circuits (PICs) are an approach that fulfills those requirements. PICs enable the integration of different optical modules on a single chip. Low loss fiber coupling and simplified packaging are key issues in keeping the price of PICs at a low level. Integrated spot size converters (SSC) offer an opportunity to accomplish this. Design, fabrication and characterization of SSCs based on an asymmetric twin waveguide (ATG) at a wavelength of 1.55 μm are the main elements of this dissertation. It is theoretically and experimentally shown that a passive ATG facilitates a polarization filter mechanism. A reproducible InP process guideline is developed that achieves vertical waveguides with smooth sidewalls. Birefringence and resonant coupling are used in an ATG to enable a polarization filtering and splitting mechanism. For the first time such a filter is experimentally shown. At a wavelength of 1610 nm a power extinction ratio of (1.6 ± 0.2) dB was measured for the TE- polarization in a single approximately 372 μm long TM- pass polarizer. A TE-pass polarizer with a similar length was demonstrated with a TM/TE-power extinction ratio of (0.7 ± 0.2) dB at 1610 nm. The refractive indices of two different InGaAsP compositions, required for a SSC, are measured by the reflection spectroscopy technique. A SSC layout for dielectric-free fabricated compact photodetectors is adjusted to those index values. The development and the results of the final fabrication procedure for the ATG concept are outlined. The etch rate, sidewall roughness and selectivity of a Cl2/CH4/H2 based inductively coupled plasma (ICP) etch are investigated by a design of experiment approach. The passivation effect of CH4 is illustrated for the first time. Conditions are determined for etching smooth and vertical sidewalls up to a depth of 5 μm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solar Energy is a clean and abundant energy source that can help reduce reliance on fossil fuels around which questions still persist about their contribution to climate and long-term availability. Monolithic triple-junction solar cells are currently the state of the art photovoltaic devices with champion cell efficiencies exceeding 40%, but their ultimate efficiency is restricted by the current-matching constraint of series-connected cells. The objective of this thesis was to investigate the use of solar cells with lattice constants equal to InP in order to reduce the constraint of current matching in multi-junction solar cells. This was addressed by two approaches: Firstly, the formation of mechanically stacked solar cells (MSSC) was investigated through the addition of separate connections to individual cells that make up a multi-junction device. An electrical and optical modelling approach identified separately connected InGaAs bottom cells stacked under dual-junction GaAs based top cells as a route to high efficiency. An InGaAs solar cell was fabricated on an InP substrate with a measured 1-Sun conversion efficiency of 9.3%. A comparative study of adhesives found benzocyclobutene to be the most suitable for bonding component cells in a mechanically stacked configuration owing to its higher thermal conductivity and refractive index when compared to other candidate adhesives. A flip-chip process was developed to bond single-junction GaAs and InGaAs cells with a measured 4-terminal MSSC efficiency of 25.2% under 1-Sun conditions. Additionally, a novel InAlAs solar cell was identified, which can be used to provide an alternative to the well established GaAs solar cell. As wide bandgap InAlAs solar cells have not been extensively investigated for use in photovoltaics, single-junction cells were fabricated and their properties relevant to PV operation analysed. Minority carrier diffusion lengths in the micrometre range were extracted, confirming InAlAs as a suitable material for use in III-V solar cells, and a 1-Sun conversion efficiency of 6.6% measured for cells with 800 nm thick absorber layers. Given the cost and small diameter of commercially available InP wafers, InGaAs and InAlAs solar cells were fabricated on alternative substrates, namely GaAs. As a first demonstration the lattice constant of a GaAs substrate was graded to InP using an InxGa1-xAs metamorphic buffer layer onto which cells were grown. This was the first demonstration of an InAlAs solar cell on an alternative substrate and an initial step towards fabricating these cells on Si. The results presented offer a route to developing multi-junction solar cell devices based on the InP lattice parameter, thus extending the range of available bandgaps for high efficiency cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The continued advancement of metal oxide semiconductor field effect transistor (MOSFET) technology has shifted the focus from Si/SiO2 transistors towards high-κ/III-V transistors for high performance, faster devices. This has been necessary due to the limitations associated with the scaling of the SiO2 thickness below ~1 nm and the associated increased leakage current due to direct electron tunnelling through the gate oxide. The use of these materials exhibiting lower effective charge carrier mass in conjunction with the use of a high-κ gate oxide allows for the continuation of device scaling and increases in the associated MOSFET device performance. The high-κ/III-V interface is a critical challenge to the integration of high-κ dielectrics on III-V channels. The interfacial chemistry of the high-κ/III-V system is more complex than Si, due to the nature of the multitude of potential native oxide chemistries at the surface with the resultant interfacial layer showing poor electrical insulating properties when high-κ dielectrics are deposited directly on these oxides. It is necessary to ensure that a good quality interface is formed in order to reduce leakage and interface state defect density to maximise channel mobility and reduce variability and power dissipation. In this work, the ALD growth of aluminium oxide (Al2O3) and hafnium oxide (HfO2) after various surface pre-treatments was carried out, with the aim of improving the high-κ/III-V interface by reducing the Dit – the density of interface defects caused by imperfections such as dangling bonds, dimers and other unsatisfied bonds at the interfaces of materials. A brief investigation was performed into the structural and electrical properties of Al2O3 films deposited on In0.53Ga0.47As at 200 and 300oC via a novel amidinate precursor. Samples were determined to experience a severe nucleation delay when deposited directly on native oxides, leading to diminished functionality as a gate insulator due to largely reduced growth per cycle. Aluminium oxide MOS capacitors were prepared by ALD and the electrical characteristics of GaAs, In0.53Ga0.47As and InP capacitors which had been exposed to pre-pulse treatments from triethyl gallium and trimethyl indium were examined, to determine if self-cleaning reactions similar to those of trimethyl aluminium occur for other alkyl precursors. An improved C-V characteristic was observed for GaAs devices indicating an improved interface possibly indicating an improvement of the surface upon pre-pulsing with TEG, conversely degraded electrical characteristics observed for In0.53Ga0.47As and InP MOS devices after pre-treatment with triethyl gallium and trimethyl indium respectively. The electrical characteristics of Al2O3/In0.53Ga0.47As MOS capacitors after in-situ H2/Ar plasma treatment or in-situ ammonium sulphide passivation were investigated and estimates of interface Dit calculated. The use of plasma reduced the amount of interface defects as evidenced in the improved C-V characteristics. Samples treated with ammonium sulphide in the ALD chamber were found to display no significant improvement of the high-κ/III-V interface. HfO2 MOS capacitors were fabricated using two different precursors comparing the industry standard hafnium chloride process with deposition from amide precursors incorporating a ~1nm interface control layer of aluminium oxide and the structural and electrical properties investigated. Capacitors furnished from the chloride process exhibited lower hysteresis and improved C-V characteristics as compared to that of hafnium dioxide grown from an amide precursor, an indication that no etching of the film takes place using the chloride precursor in conjunction with a 1nm interlayer. Optimisation of the amide process was carried out and scaled samples electrically characterised in order to determine if reduced bilayer structures display improved electrical characteristics. Samples were determined to exhibit good electrical characteristics with a low midgap Dit indicative of an unpinned Fermi level

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantitative analysis of penetrative deformation in sedimentary rocks of fold and thrust belts has largely been carried out using clast based strain analysis techniques. These methods analyse the geometric deviations from an original state that populations of clasts, or strain markers, have undergone. The characterisation of these geometric changes, or strain, in the early stages of rock deformation is not entirely straight forward. This is in part due to the paucity of information on the original state of the strain markers, but also the uncertainty of the relative rheological properties of the strain markers and their matrix during deformation, as well as the interaction of two competing fabrics, such as bedding and cleavage. Furthermore one of the single largest setbacks for accurate strain analysis has been associated with the methods themselves, they are traditionally time consuming, labour intensive and results can vary between users. A suite of semi-automated techniques have been tested and found to work very well, but in low strain environments the problems discussed above persist. Additionally these techniques have been compared to Anisotropy of Magnetic Susceptibility (AMS) analyses, which is a particularly sensitive tool for the characterisation of low strain in sedimentary lithologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spatially periodic vegetation patterns are well known in arid and semi-arid regions around the world. Mathematical models have been developed that attribute this phenomenon to a symmetry-breaking instability. Such models are based on the interplay between competitive and facilitative influences that the vegetation exerts on its own dynamics when it is constrained by arid conditions, but evidence for these predictions is still lacking. Moreover, not all models can account for the development of regularly spaced spots of bare ground in the absence of a soil prepattern. We applied Fourier analysis to high-resolution, remotely sensed data taken at either end of a 40-year interval in southern Niger. Statistical comparisons based on this textural characterization gave us broad-scale evidence that the decrease in rainfall over recent decades in the sub-Saharan Sahel has been accompanied by a detectable shift from homogeneous vegetation cover to spotted patterns marked by a spatial frequency of about 20 cycles km-1. Wood cutting and grazing by domestic animals have led to a much more marked transition in unprotected areas than in a protected reserve. Field measurements demonstrated that the dominant spatial frequency was endogenous rather than reflecting the spatial variation of any pre-existing heterogeneity in soil properties. All these results support the use of models that can account for periodic vegetation patterns without invoking substrate heterogeneity or anisotropy, and provide new elements for further developments, refinements and tests. This study underlines the potential of studying vegetation pattern properties for monitoring climatic and human impacts on the extensive fragile areas bordering hot deserts. Explicit consideration of vegetation self-patterning may also improve our understanding of vegetation and climate interactions in arid areas. © 2006 The Authors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tissue engineering of various musculoskeletal or cardiovascular tissues requires scaffolds with controllable mechanical anisotropy. However, native tissues also exhibit significant inhomogeneity in their mechanical properties, and the principal axes of anisotropy may vary with site or depth from the tissue surface. Thus, techniques to produce multilayered biomaterial scaffolds with controllable anisotropy may provide improved biomimetic properties for functional tissue replacements. In this study, poly(ε-caprolactone) scaffolds were electrospun onto a collecting electrode that was partially covered by rectangular or square shaped insulating masks. The use of a rectangular mask resulted in aligned scaffolds that were significantly stiffer in tension in the axial direction than the transverse direction at 0 strain (22.9 ± 1.3 MPa axial, 16.1 ± 0.9 MPa transverse), and at 0.1 strain (4.8 ± 0.3 MPa axial, 3.5 ± 0.2 MPa transverse). The unaligned scaffolds, produced using a square mask, did not show this anisotropy, with similar stiffness in the axial and transverse directions at 0 strain (19.7 ± 1.4 MPa axial, 20.8 ± 1.3 MPa transverse) and 0.1 strain (4.4 ± 0.2 MPa axial, 4.6 ± 0.3 MPa, transverse). Aligned scaffolds also induced alignment of adipose stem cells near the expected axis on aligned scaffolds (0.015 ± 0.056 rad), while on the unaligned scaffolds, their orientation showed more variation and was not along the expected axis (1.005 ± 0.225 rad). This method provides a novel means of creating multilayered electrospun scaffolds with controlled anisotropy for each layer, potentially providing a means to mimic the complex mechanical properties of various native tissues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of concentrating semi-volatile aerosols using a water-condensation technology was investigated using the Versatile Aerosol Concentration Enrichment System (VACES) and the Aerodyne Aerosol Mass Spectrometer (AMS) during measurements of ambient aerosol in Pittsburgh, PA. It was found that the shape of the sulfate mass-weighed size distribution was approximately preserved during passage through the concentrator for all the experiments performed, with a mass enhancement factor of about 10-20 depending on the experiment. The size distributions of organics, ammonium and nitrate were preserved on a relatively clean day (sulfate concentration around 7μg/m3), while during more polluted conditions the concentration of these compounds, especially nitrate, was increased at small sizes after passage through the concentrator. The amount of the extra material, however, is rather small in these experiments: between 2.4% and 7.5% of the final concentrated PM mass is due to "artifact" condensation. An analysis of thermodynamic processes in the concentrator indicates that the extra particle material detected can be explained by redistribution of gas-phase material to the aerosol phase in the concentrator. The analysis shows that the condensation of extra material is expected to be larger for water-soluble semi-volatile material, such as nitrate, which agrees with the observations. The analysis also shows that artifact formation of nitrate will be more pronounced in ammonia-limited conditions and virtually undetectable in ammonia-rich conditions. © 2004 Elsevier Ltd. All rights reserved.