965 resultados para sediment retention in reservoirs
Resumo:
This study focuses on sedimentological investigations of sediment cores recovered during the international Arctic'91, expeditions with the German research ice breaker RV "Polarstern" to the European sector of the Arctic Ocean. Here, we deduce the last glacial/interglacial changes in transport mechanism and sedimentation from the clay mineral group smectite. We choose the smectites as an example of how sediment mineralogy can be linked with particular source regions (the Kara and Laptev seas), distinct transport mechanism (sea ice and surface currents) and sedimentation processes. Smectite contents in Arctic sediments discussed for two time slices, including the Last Glacial Maximum (LGM), and the last deglaciation (Termination I), reveal the highest variability subsequent to the retreat of the Eurasian ice sheets. Our results show that smectite anomalies in the Eurasian Basin are associated with distinct meltwater pulses and occurred around 13.5-13.0 14C ka B.P. Compelling evidence is provided that these anomalies are deduced from sea-ice entrained sediments from the eastern Kara Sea that entered the Arctic Ocean after ice-sheet break-up and eventually flooding of the Kara Sea. We propose that smectite anomalies in sediments of the eastern Arctic Ocean can be utilized to identify deglacial events and to help decipher configurations of the Eurasian ice sheets. The identification of smectite maxima along the modern sea-ice edge in the Eurasian Basin further indicates biologically enhanced sedimentation from melting sea ice allowing the reconstruction of seasonally open water in the region. Hence, considering the poor preservation conditions of primary paleoceanographic proxies in the Arctic Ocean, the clay mineral contents, particularly the smectite group, may be one alternative tool for paleoclimatic reconstruction in the Eurasian Basin.
Resumo:
The sandfraction of the sediment was analysed in five cores, taken from 65 m water depth in the central and eastern part of the Persian Gulf. The holocene marls are underlayn by aragonite muds, which are probably 10-11,000 years old. 1. The cores could be subdivided into coarse grained and fine grained layers. Sorting is demonstrated by the following criteria: With increasing median values of the sandfraction - the fine grained fraction decreases within each core; - the median of each biogenic component, benthonic as well as planktonic, increases; - the median of the relict sediment, which in core 1179 was carried upward into the marl by bioturbation, increases; - the percentages of pelecypods, gastropods, decapods and serpulid worms in the sandfraction increase, the percentages of foraminifera and ostracods decrease; - the ratios of pelecypods to foraminifera and of decapods to ostracods increase; - the ratios of benthonic molluscs to planktonic molluscs (pteropods) and of benthonic foraminifera to planktonic foraminifera increase (except in core 1056 and 1179); - the ratio of planktonic molluscs (pteropods) to planktonic foraminifera increases; - the globigerinas without orbulinas increase, the orbulinas decrease in core 1056. Different settling velocities of these biogenic particles help in better understanding the results : the settling velocities, hence the equivalent hydrodynamic diameters, of orbulinas are smaller than those of other globigerinas, those of planktonic foraminifera are smaller than those of planktonic molluscs, those of planktonic molluscs are smaller than those of benthonic molluscs, those of pelecypods are smaller than those of gastropods. Bioturbation could not entirely distroy this "grain-size-stratification". Sorting has been stronger in the coarse layers than in the finer ones. As a cause variations in the supply of terrigenous material at constant strength of tidal currents is suggested. When much terrigenous material is supplied (large contents of fine grained fraction) the sedimentation rates are high: the respective sediment surface is soon covered and removed from the influence of tidal currents. When, however, the supply of terrigenous material is small, more sandy material is taken away in all locations within the influence of terrigenous supply. Thus the biogenic particles in the sediment do not only reflect the organic production, but also the influence of currents. 2. There is no parameter present in all cores that is independently variable from grain size and can be used for stratigraphic correlation. The two cores from the Strait of Hormus were correlated by their sequences of coarse and fine grained layers. 3. The sedimentation rates of terrigenous material, of total planktonic and benthonic organisms and of molluscs, foraminifera, echinoids and ophiuroids are shown in table 1 (total sediment 6.3-75.5 cm/1000 yr, biogenic carbonate 1.9-3.6 cm/1000 yr). The sedimentation rates of benthonic organisms are nearly the same in the cores of the Strait of Hormus, whereas near the Central Swell they are smaller. In the upper parts of the two cores of the Strait of Hormus sedimentation rates are higher than in the deeper parts, where higher median values point to stronger reworking. 4. The sequence of coarse and fine grained intervals in the two cores of the Hormus Strait, attributed to variations in climate, as well as the increase of terrigenous supply from the deeper to the upper parts of the cores, agrees with the descriptions in the literature of the post Pleistocene climate as becoming more humid. The rise of sea level is sedimentologically not measurable in the marly sediments - except perhaps for the higher content of echinoids in the lower part of core 1056. These may be attributed to the influence of a migrating wave-base. 5. The late Pleistocene aragonite mud is very fine grained (> 50%< 2 p) and poor in fossils (0.5-1.8%) biogenic particles of total sediment. The sand fraction consists almost entirely of white clumps, c. 0.1 mm in diameter (1177), composed of aragonite needles and of detrital minerals with the same size (1201). The argonite mud was probably not formed in situ, because the water depth at time of formation was at most 35 m at least 12 m. The sorting of the sediment (predominance of the fine grained sand), the absence of larger biogenic components and of pellets, c. 0.2-0.5 mm in diameter, which are typical for Recent and Pleistocene locations of aragonite formation, as well as the sedimentological conditions near the sampling points, indicate rather a transport of aragonite mud from an area of formation in very shallow waters. Sorting as well as lenticular fabric in core 1201 point to sedimentation within the influence of currents. During alternating sedimentation - and reworking processes the aragonitic matrix was separated from the silt - and sand-sized minerals. The lenses grade into touches because of bioturbation. 6. In core 1056 D2 from Hormus Bay the percentages of organic carbon, total nitrogen and total carbonate were determined. With increasing amounts of smaller grain sizes the content of organic matter increases, whereas the amount of carbonate decreases. The amounts of organic carbon and of nitrogen decrease with increasing depth, probably due to early-diagenetic decomposition processes. Most of the total nitrogen is of organic origin, only about 10% may well be inorganically fixed as ammonium-nitrogen. In the upper part of the core the C/N-ratio increases with increasing depth. This may be connected with a stronger decomposition of nitrogen-containing organic compounds. The general decrease of the C/N-ratios in the lower part of the core may be explained by the relative increase of inorganically fixed ammonium-nitrogen with decreasing content of organic matter.
Resumo:
Distribution of diatoms, radiolarians, planktonic and benthic foraminifers, and sediment components in fraction >0.125 mm was analyzed in a core obtained from the central Sea of Okhotsk within frameworks of the Russian-German KOMEX Project. The core section characterizes the period 190-350 ka, which corresponds to marine-isotopic stages (MIS) 7 to 10. During glacial MIS 10 and MIS 8, the basin accumulated terrigenous material lacking microfossils or containing them in low abundance, which reflects, along with their composition, heavy sea-ice conditions, suppressed bioproductivity, and bottom environment aggressive toward calcium carbonate. Interglacial MIS 9 was characterized by elevated bioproductivity with accumulation of diatomaceous ooze during the climatic optimum (328 to 320 ka). Water exchange with the Pacific was maximal from 328 to 324 ka ago. Environment became moderate and close to the present-day one at the end of the optimum exhibiting possible existence of a dichothermal layer with substantial amounts of surface Pacific water still flowing into the basin. Similar to interglacial MIS 5e and MIS 1, ''old'' Pacific water determined near-bottom environment in the central Sea of Okhotsk during that period, although influx of terrigenous material was higher, probably reflecting more humid climate of the region. Slight warming marked the terminal MIS 8 (approximately 260 ka ago). Paleoceanographic situation during the interglacial MIS 7 was highly variable: from warm-water to almost glacial. The main climatic optimum of MIS 7 occurred within 220-210 ka, when subsurface stratification increased and the dichothermal layer developed. Bottom environment during the studied time interval, except for the optimum of interglacial MIS 9, resembled those characteristic of glacial periods: actively formed ''young'' Okhotsk water displaced ''old'' Pacific deep water.
Resumo:
The textural and compositional characteristics of the 400 m sequence of Pleistocene wackestones and packstones intersected at Ocean Drilling Program (ODP) Site 820 reflect deposition controlled by fluctuations in sea-level, and by variations in the rate of sediment supply. The development of an effective reefal barrier adjacent to Site 820, between 760 k.y. and 1.01 Ma, resulted in a marked reduction in sediment accumulation rates on the central Great Barrier Reef outermost shelf and upper slope. This marked change corresponds with the transition from sigmoidal prograding seismic geometry in the lower 254 m of the sequence, to aggradational geometry in the top 146 m. The reduction in the rate of sediment accumulation that followed development of the reefal barrier also caused a fundamental change in the way in which fluctuations in sea-level controlled sediment deposition. In the lower, progradational portion of the sequence, sea-level cyclicity is represented by superimposed coarsening-upward cycles. Although moderately calcareous throughout (mostly 35%-75% CaCO3), the depositional system acted in a similar manner to siliciclastic shelf depositional systems. Relative sea-level rises resulted in deposition of more condensed, less calcareous, fine, muddy wackestones at the base of each cycle. Sea-level highstands resulted in increased sedimentation rates and greater influx of coarse bioclastic material. Continued high rates of sedimentation of both coarse bioclastic material and mixed carbonate and terrigenous mud marked falling and low sea-levels. This lower part of the sequence therefore is dominated by coarse packstones, with only thin wackestone intervals representing transgressions. In contrast, sea-level fluctuations following formation of an effective reefal barrier produced a markedly different sedimentary record. The more slowly deposited aggradational sequence is characterized by discrete thin interbeds of relatively coarse packstone within a predominantly fine wackestone sequence. These thin packstone beds resulted from relatively low sedimentation rates during falling and low sea-levels, with much higher rates of muddy sediment accumulation during rising and high sea-levels. The transition from progradational to aggradational sequence geometry therefore corresponds to a transition from a "siliciclastic-type" to a "carbonate-type" depositional system.
Resumo:
To assess the regional effects of glaciation on sedimentation in the Atlantic Ocean we compare sediment types, distributions, and rates between Recent (core top) and last glacial maximum (LGM: ~18,000 years B.P.) stratigraphic levels. Based upon smear slides and carbonate analyses in 178 cores we find that glacial age carbonate content is generally lower than Recent. During both the Recent and LGM, carbonate content shows an east/west asymmetry with western basins exhibiting lower carbonate values. Input of ice-rafted detritus into the North Atlantic during LGM time interrupts this topographic control on carbonate distribution considerably farther south than at present; in the South Atlantic this effect is minor. Comparison of LGM and Recent sediment distributions indicates that the LGM seafloor was dominated by biogenic oozes, calcareous clays, and clays, while the Recent is dominated by biogenic oozes and marls. Coarse-grained detritus is much more prevalent in LGM sediments, derived not only from glacial input but also from fluvial and aeolian sources. Sedimentation rates, calculated from LGM to Recent sediment thickness in cores, are <4 cm/1000 yr for most of the ocean. Higher rates are typical of the continental margin off the Amazon River, the North American Basin, and a small region off west equatorial Africa.
Resumo:
Using a new temperature recording instrument recently developed at the Woods Hole Oceanographic Institution, downhole temperature measurements were made at five sites during Deep Sea Drilling Project Leg 86. The instrument, which can be installed in the shoe of the hydraulic piston corer, allows measurements of sediment temperature to be made simultaneously with the collection of sediment cores. A numerical procedure was applied to correct the temperature disturbance caused by the corer's friction with the sediment. Detailed temperature profiles constructed from the data were combined with the measurement of thermal conductivity to calculate heat flow. Heat flow values were generally low at all sites of Leg 86, consistent with the age of the lithosphere (>100 m.y.) in the Northwestern Pacific Basin.
Resumo:
Oxygen exposure has a large impact on lipid biomarker preservation in surface sediments and may affect the application of organic proxies used for reconstructing past environmental conditions. To determine its effect on long chain alkyl diol and keto-ol based proxies, the distributions of these lipids was studied in nine surface sediments from the Murray Ridge in the Arabian Sea obtained from varying water depths (900 to 3000 m) but in close lateral proximity and, therefore, likely receiving a similar particle flux. Due to substantial differences in bottom water oxygen concentration (<3 to 77 µmol/L) and sedimentation rate, substantial differences exist in the time the biomarker lipids are exposed to oxygen in the sediment. Long chain alkyl diol and keto-ol concentrations in the surface sediments (0-0.5 cm) decreased progressively with increasing oxygen exposure time, suggesting increased oxic degradation. The 1,15-keto-ol/diol ratio (DOXI) increased slightly with oxygen exposure time as diols had apparently slightly higher degradation rates than keto-ols. The ratio of 1,14- vs. 1,13- or 1,15-diols, used as upwelling proxies, did not show substantial changes. However, the C30 1,15-diol exhibited a slightly higher degradation rate than C28 and C30 1,13-diols, and thus the Long chain Diol Index (LDI), used as sea surface temperature proxy, showed a negative correlation with the maximum residence time in the oxic zone of the sediment, resulting in ca. 2-3.5 °C change, when translated to temperature. The UK'37 index did not show significant changes with increasing oxygen exposure. This suggests that oxic degradation may affect temperature reconstructions using the LDI in oxic settings and where oxygen concentrations have varied substantially over time.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
The progression of renal disease correlates strongly with hypertension and the degree of proteinuria, suggesting a link between excessive Na+ reabsorption and exposure of the proximal tubule to protein. The present study investigated the effects of albumin on cell growth and Na+ uptake in primary cultures of human proximal tubule cells (PTC). Albumin (1.0 mg/ml) increased cell proliferation to 134.1 +/- 11.8% (P < 0.001) of control levels with no change in levels of apoptosis. Exposure to 0.1 and 1.0 mg/ml albumin increased total Na-22(+) uptake to 119.1 &PLUSMN; 6.3% (P = 0.005) and 115.6 &PLUSMN; 5.3% (P < 0.006) of control levels, respectively, because of an increase in Na+/H+ exchanger isoform 3 (NHE3) activity. This was associated with an increase in NHE3 mRNA to 161.1 +/- 15.1% (P < 0.005) of control levels in response to 0.1 mg/ml albumin. Using confocal microscopy with a novel antibody raised against the predicted extracellular NH2 terminus of human NHE3, we observed in nonpermeabilized cells that exposure of PTC to albumin (0.1 and 1.0 mg/ml) increased NHE3 at the cell surface to 115.4 &PLUSMN; 2.7% (P < 0.0005) and 122.4 +/- 3.7% (P < 0.0001) of control levels, respectively. This effect was paralleled by significant increases in NHE3 in the subplasmalemmal region as measured in permeabilized cells. These albumin-induced increases in expression and activity of NHE3 in PTC suggest a possible mechanism for Na+ retention in response to proteinuria.
Resumo:
Queensland, Australia, has a proud pastoral history; however, the private and social benefits of continued woodland clearing for pasture development are unlikely to be as pronounced as they had been in the past. The environmental benefits of tree retention in and regions of the State are now better appreciated and market opportunities have arisen for the unique timbers of western Queensland. A financial model is developed to facilitate a comparison of the private profitability of small-scale timber production from remnant Acacia woodlands against clearing for pasture development in the Mulga Lands and Desert Uplands bioregions of western Queensland. Four small-scale timber production scenarios, which differ in target markets and the extent of processing (value-adding), are explored within the model. Each scenario is examined for the cases where property rights to the timber are vested with the timber processor, and where royalties are payable. For both cases of resource ownership, at least one scenario generates positive returns from timber production, and exceeds the net farm income per hectare for an average grazing property in the study regions over the period 1989-1990 to 2000-2001. The net present value per hectare of selectively harvesting and processing high-value clearwood from remnant western Queensland woodlands is found to be greater than clearing for grazing. (C) 2003 Elsevier B.V. All rights reserved.