994 resultados para seasonal occurrence
Resumo:
A field monitoring study was carried out to follow the changes of fine root morphology, biomass and nutrient status in relation to seasonal changes in soil solution chemistry and moisture regime in a mature Scots pine stand on acid soil. Seasonal and yearly fluctuations in soil moisture and soil solution chemistry have been observed. Changes in soil moisture accounted for some of the changes in the soil solution chemistry. The results showed that when natural acidification in the soil occurs with low pH (3.5-4.2) and high aluminium concentration in the soil solution (> 3-10 mg l(-1)), fine root longevity and distribution could be affected. However, fine root growth of Scots pine may not be negatively influenced by adverse soil chemical conditions if soil moisture is not a limiting factor for root growth. In contrast, dry soil conditions increase Scots pine susceptibility to soil acidification and this could significantly reduce fine root growth and increase root mortality. It is therefore important to study seasonal fluctuations of the environmental variables when investigating and modelling cause-effect relationships.
Resumo:
A seasonal forecasting system that is capable of skilfully predicting rainfall totals on a regional scale would be of great value to Ethiopia. Here, we describe how a statistical model can exploit the teleconnections described in part 1 of this pair of papers to develop such a system. We show that, in most cases, the predictors selected objectively by the statistical model can be interpreted in the light of physical teleconnections with Ethiopian rainfall, and discuss why, in some cases, unexpected regions are chosen as predictors. We show that the forecast has skill in all parts of Ethiopia, and argue that this method could provide the basis of an operational seasonal forecasting system for Ethiopia.
Resumo:
Eight years of cloud properties retrieved from Television Infrared Observation Satellite-N (TIROS-N) Observational Vertical Sounder (TOVS) observations aboard the NOAA polar orbiting satellites are presented. The relatively high spectral resolution of these instruments in the infrared allows especially reliable cirrus identification day and night. This dataset therefore provides complementary information to the International Satellite Cloud Climatology Project (ISCCP). According to this dataset, cirrus clouds cover about 27% of the earth and 45% of the Tropics, whereas ISCCP reports 19% and 25%, respectively. Both global datasets agree within 5% on the amount of single-layer low clouds, at 30%. From 1987 to 1995, global cloud amounts remained stable to within 2%. The seasonal cycle of cloud amount is in general stronger than its diurnal cycle and it is stronger than the one of effective cloud amount, the latter the relevant variable for radiative transfer. Maximum effective low cloud amount over ocean occurs in winter in SH subtropics in the early morning hours and in NH midlatitudes without diurnal cycle. Over land in winter the maximum is in the early afternoon, accompanied in the midlatitudes by thin cirrus. Over tropical land and in the other regions in summer, the maximum of mesoscale high opaque clouds occurs in the evening. Cirrus also increases during the afternoon and persists during night and early morning. The maximum of thin cirrus is in the early afternoon, then decreases slowly while cirrus and high opaque clouds increase. TOVS extends information of ISCCP during night, indicating that high cloudiness, increasing during the afternoon, persists longer during night in the Tropics and subtropics than in midlatitudes. A comparison of seasonal and diurnal cycle of high cloud amount between South America, Africa, and Indonesia during boreal winter has shown strong similarities between the two land regions, whereas the Indonesian islands show a seasonal and diurnal behavior strongly influenced by the surrounding ocean. Deeper precipitation systems over Africa than over South America do not seem to be directly reflected in the horizontal coverage and mesoscale effective emissivity of high clouds.
Resumo:
This study proposes an objective integrated seasonal forecasting system for producing well-calibrated probabilistic rainfall forecasts for South America. The proposed system has two components: ( i) an empirical model that uses Pacific and Atlantic sea surface temperature anomalies as predictors for rainfall and ( ii) a multimodel system composed of three European coupled ocean - atmosphere models. Three-month lead austral summer rainfall predictions produced by the components of the system are integrated ( i. e., combined and calibrated) using a Bayesian forecast assimilation procedure. The skill of empirical, coupled multimodel, and integrated forecasts obtained with forecast assimilation is assessed and compared. The simple coupled multimodel ensemble has a comparable level of skill to that obtained using a simplified empirical approach. As for most regions of the globe, seasonal forecast skill for South America is low. However, when empirical and coupled multimodel predictions are combined and calibrated using forecast assimilation, more skillful integrated forecasts are obtained than with either empirical or coupled multimodel predictions alone. Both the reliability and resolution of the forecasts have been improved by forecast assimilation in several regions of South America. The Tropics and the area of southern Brazil, Uruguay, Paraguay, and northern Argentina have been found to be the two most predictable regions of South America during the austral summer. Skillful rainfall forecasts are generally only possible during El Nino or La Nina years rather than in neutral years.
Resumo:
The performance of boreal winter forecasts made with the European Centre for Medium-Range Weather Forecasts (ECMWF) System 11 Seasonal Forecasting System is investigated through analyses of ensemble hindcasts for the period 1987-2001. The predictability, or signal-to-noise ratio, associated with the forecasts, and the forecast skill are examined. On average, forecasts of 500 hPa geopotential height (GPH) have skill in most of the Tropics and in a few regions of the extratropics. There is broad, but not perfect, agreement between regions of high predictability and regions of high skill. However, model errors are also identified, in particular regions where the forecast ensemble spread appears too small. For individual winters the information provided by t-values, a simple measure of the forecast signal-to-noise ratio, is investigated. For 2 m surface air temperature (T2m), highest t-values are found in the Tropics but there is considerable interannual variability, and in the tropical Atlantic and Indian basins this variability is not directly tied to the El Nino Southern Oscillation. For GPH there is also large interannual variability in t-values, but these variations cannot easily be predicted from the strength of the tropical sea-surface-temperature anomalies. It is argued that the t-values for 500 hPa GPH can give valuable insight into the oceanic forcing of the atmosphere that generates predictable signals in the model. Consequently, t-values may be a useful tool for understanding, at a mechanistic level, forecast successes and failures. Lastly, the extent to which t-values are useful as a predictor of forecast skill is investigated. For T2m, t-values provide a useful predictor of forecast skill in both the Tropics and extratropics. Except in the equatorial east Pacific, most of the information in t-values is associated with interannual variability of the ensemble-mean forecast rather than interannual variability of the ensemble spread. For GPH, however, t-values provide a useful predictor of forecast skill only in the tropical Pacific region.
Resumo:
The modelled El Nino-mean state-seasonal cycle interactions in 23 coupled ocean-atmosphere GCMs, including the recent IPCC AR4 models, are assessed and compared to observations and theory. The models show a clear improvement over previous generations in simulating the tropical Pacific climatology. Systematic biases still include too strong mean and seasonal cycle of trade winds. El Nino amplitude is shown to be an inverse function of the mean trade winds in agreement with the observed shift of 1976 and with theoretical studies. El Nino amplitude is further shown to be an inverse function of the relative strength of the seasonal cycle. When most of the energy is within the seasonal cycle, little is left for inter-annual signals and vice versa. An interannual coupling strength (ICS) is defined and its relation with the modelled El Nino frequency is compared to that predicted by theoretical models. An assessment of the modelled El Nino in term of SST mode (S-mode) or thermocline mode (T-mode) shows that most models are locked into a S-mode and that only a few models exhibit a hybrid mode, like in observations. It is concluded that several basic El Nino-mean state-seasonal cycle relationships proposed by either theory or analysis of observations seem to be reproduced by CGCMs. This is especially true for the amplitude of El Nino and is less clear for its frequency. Most of these relationships, first established for the pre-industrial control simulations, hold for the double and quadruple CO2 stabilized scenarios. The models that exhibit the largest El Nino amplitude change in these greenhouse gas (GHG) increase scenarios are those that exhibit a mode change towards a T-mode (either from S-mode to hybrid or hybrid to T-mode). This follows the observed 1976 climate shift in the tropical Pacific, and supports the-still debated-finding of studies that associated this shift to increased GHGs. In many respects, these models are also among those that best simulate the tropical Pacific climatology (ECHAM5/MPI-OM, GFDL-CM2.0, GFDL-CM2.1, MRI-CGM2.3.2, UKMO-HadCM3). Results from this large subset of models suggest the likelihood of increased El Nino amplitude in a warmer climate, though there is considerable spread of El Nino behaviour among the models and the changes in the subsurface thermocline properties that may be important for El Nino change could not be assessed. There are no clear indications of an El Nino frequency change with increased GHG.
Resumo:
In this paper we focus on the one year ahead prediction of the electricity peak-demand daily trajectory during the winter season in Central England and Wales. We define a Bayesian hierarchical model for predicting the winter trajectories and present results based on the past observed weather. Thanks to the flexibility of the Bayesian approach, we are able to produce the marginal posterior distributions of all the predictands of interest. This is a fundamental progress with respect to the classical methods. The results are encouraging in both skill and representation of uncertainty. Further extensions are straightforward at least in principle. The main two of those consist in conditioning the weather generator model with respect to additional information like the knowledge of the first part of the winter and/or the seasonal weather forecast. Copyright (C) 2006 John Wiley & Sons, Ltd.
Resumo:
This study addresses three issues: spatial downscaling, calibration, and combination of seasonal predictions produced by different coupled ocean-atmosphere climate models. It examines the feasibility Of using a Bayesian procedure for producing combined, well-calibrated downscaled seasonal rainfall forecasts for two regions in South America and river flow forecasts for the Parana river in the south of Brazil and the Tocantins river in the north of Brazil. These forecasts are important for national electricity generation management and planning. A Bayesian procedure, referred to here as forecast assimilation, is used to combine and calibrate the rainfall predictions produced by three climate models. Forecast assimilation is able to improve the skill of 3-month lead November-December-January multi-model rainfall predictions over the two South American regions. Improvements are noted in forecast seasonal mean values and uncertainty estimates. River flow forecasts are less skilful than rainfall forecasts. This is partially because natural river flow is a derived quantity that is sensitive to hydrological as well as meteorological processes, and to human intervention in the form of reservoir management.