996 resultados para sampling frequency
Resumo:
The systematic sampling (SYS) design (Madow and Madow, 1944) is widely used by statistical offices due to its simplicity and efficiency (e.g., Iachan, 1982). But it suffers from a serious defect, namely, that it is impossible to unbiasedly estimate the sampling variance (Iachan, 1982) and usual variance estimators (Yates and Grundy, 1953) are inadequate and can overestimate the variance significantly (Särndal et al., 1992). We propose a novel variance estimator which is less biased and that can be implemented with any given population order. We will justify this estimator theoretically and with a Monte Carlo simulation study.
Resumo:
We show that the Hájek (Ann. Math Statist. (1964) 1491) variance estimator can be used to estimate the variance of the Horvitz–Thompson estimator when the Chao sampling scheme (Chao, Biometrika 69 (1982) 653) is implemented. This estimator is simple and can be implemented with any statistical packages. We consider a numerical and an analytic method to show that this estimator can be used. A series of simulations supports our findings.
Resumo:
Stephens and Donnelly have introduced a simple yet powerful importance sampling scheme for computing the likelihood in population genetic models. Fundamental to the method is an approximation to the conditional probability of the allelic type of an additional gene, given those currently in the sample. As noted by Li and Stephens, the product of these conditional probabilities for a sequence of draws that gives the frequency of allelic types in a sample is an approximation to the likelihood, and can be used directly in inference. The aim of this note is to demonstrate the high level of accuracy of "product of approximate conditionals" (PAC) likelihood when used with microsatellite data. Results obtained on simulated microsatellite data show that this strategy leads to a negligible bias over a wide range of the scaled mutation parameter theta. Furthermore, the sampling variance of likelihood estimates as well as the computation time are lower than that obtained with importance sampling on the whole range of theta. It follows that this approach represents an efficient substitute to IS algorithms in computer intensive (e.g. MCMC) inference methods in population genetics. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
Greek speakers say "ovpa", Germans "schwanz'' and the French "queue'' to describe what English speakers call a 'tail', but all of these languages use a related form of 'two' to describe the number after one. Among more than 100 Indo-European languages and dialects, the words for some meanings (such as 'tail') evolve rapidly, being expressed across languages by dozens of unrelated words, while others evolve much more slowly-such as the number 'two', for which all Indo-European language speakers use the same related word-form(1). No general linguistic mechanism has been advanced to explain this striking variation in rates of lexical replacement among meanings. Here we use four large and divergent language corpora (English(2), Spanish(3), Russian(4) and Greek(5)) and a comparative database of 200 fundamental vocabulary meanings in 87 Indo-European languages(6) to show that the frequency with which these words are used in modern language predicts their rate of replacement over thousands of years of Indo-European language evolution. Across all 200 meanings, frequently used words evolve at slower rates and infrequently used words evolve more rapidly. This relationship holds separately and identically across parts of speech for each of the four language corpora, and accounts for approximately 50% of the variation in historical rates of lexical replacement. We propose that the frequency with which specific words are used in everyday language exerts a general and law-like influence on their rates of evolution. Our findings are consistent with social models of word change that emphasize the role of selection, and suggest that owing to the ways that humans use language, some words will evolve slowly and others rapidly across all languages.
Resumo:
Imputation is commonly used to compensate for item non-response in sample surveys. If we treat the imputed values as if they are true values, and then compute the variance estimates by using standard methods, such as the jackknife, we can seriously underestimate the true variances. We propose a modified jackknife variance estimator which is defined for any without-replacement unequal probability sampling design in the presence of imputation and non-negligible sampling fraction. Mean, ratio and random-imputation methods will be considered. The practical advantage of the method proposed is its breadth of applicability.
Resumo:
Phylogenetic methods hold great promise for the reconstruction of the transition from precursor to modern flora and the identification of underlying factors which drive the process. The phylogenetic methods presently used to address the question of the origin of the Cape flora of South Africa are considered here. The sampling requirements of each of these methods, which include dating of diversifications using calibrated molecular trees, sister pair comparisons, lineage through time plots and biogeographical optimizations are reviewed. Sampling of genes, genomes and species are considered. Although increased higher-level studies and increased sampling are required for robust interpretation, it is clear that much progress is already made. It is argued that despite the remarkable richness of the flora, the Cape flora is a valuable model system to demonstrate the utility of phylogenetic methods in determining the history of a modern flora.
Resumo:
1. Suspension feeding by caseless caddisfly larvae (Trichoptera) constitutes a major pathway for energy flow, and strongly influences productivity, in streams and rivers. 2. Consideration of the impact of these animals on lotic ecosystems has been strongly influenced by a single study investigating the efficiency of particle capture of nets built by one species of hydropsychid caddisfly. 3. Using water sampling techniques at appropriate spatial scales, and taking greater consideration of local hydrodynamics than previously, we examined the size-frequency distribution of particles captured by the nets of Hydropsyche siltalai. Our results confirm that capture nets are selective in terms of particle size, and in addition suggest that this selectivity is for particles likely to provide the most energy. 4. By incorporating estimates of flow diversion around the nets of caseless caddisfly larvae, we show that capture efficiency (CE) is considerably higher than previously estimated, and conclude that more consideration of local hydrodynamics is needed to evaluate the efficiency of particle capture. 5. We use our results to postulate a mechanistic explanation for a recent example of interspecific facilitation, whereby a reduction of near-bed velocities seen in single species monocultures leads to increased capture rates and local depletion of seston within the region of reduced velocity.
Resumo:
This article introduces a new general method for genealogical inference that samples independent genealogical histories using importance sampling (IS) and then samples other parameters with Markov chain Monte Carlo (MCMC). It is then possible to more easily utilize the advantages of importance sampling in a fully Bayesian framework. The method is applied to the problem of estimating recent changes in effective population size from temporally spaced gene frequency data. The method gives the posterior distribution of effective population size at the time of the oldest sample and at the time of the most recent sample, assuming a model of exponential growth or decline during the interval. The effect of changes in number of alleles, number of loci, and sample size on the accuracy of the method is described using test simulations, and it is concluded that these have an approximately equivalent effect. The method is used on three example data sets and problems in interpreting the posterior densities are highlighted and discussed.
Resumo:
Dysregulation of lipid and glucose metabolism in the postprandial state are recognised as important risk factors for the development of cardiovascular disease and type 2 diabetes. Our objective was to create a comprehensive, standardised database of postprandial studies to provide insights into the physiological factors that influence postprandial lipid and glucose responses. Data were collated from subjects (n = 467) taking part in single and sequential meal postprandial studies conducted by researchers at the University of Reading, to form the DISRUPT (DIetary Studies: Reading Unilever Postprandial Trials) database. Subject attributes including age, gender, genotype, menopausal status, body mass index, blood pressure and a fasting biochemical profile, together with postprandial measurements of triacylglycerol (TAG), non-esterified fatty acids, glucose, insulin and TAG-rich lipoprotein composition are recorded. A particular strength of the studies is the frequency of blood sampling, with on average 10-13 blood samples taken during each postprandial assessment, and the fact that identical test meal protocols were used in a number of studies, allowing pooling of data to increase statistical power. The DISRUPT database is the most comprehensive postprandial metabolism database that exists worldwide and preliminary analysis of the pooled sequential meal postprandial dataset has revealed both confirmatory and novel observations with respect to the impact of gender and age on the postprandial TAG response. Further analysis of the dataset using conventional statistical techniques along with integrated mathematical models and clustering analysis will provide a unique opportunity to greatly expand current knowledge of the aetiology of inter-individual variability in postprandial lipid and glucose responses.
Resumo:
We report two studies of the distinct effects that a word's age of acquisition (AoA) and frequency have on the mental lexicon. In the first study, a purely statistical analysis, we show that AoA and frequency are related in different ways to the phonological form and imageability of different words. In the second study, three groups of participants (34 seven-year-olds, 30 ten-year-olds, and 17 adults) took part in an auditory lexical decision task, with stimuli varying in AoA, frequency, length, neighbourhood density, and imageability. The principal result is that the influence of these different variables changes as a function of AoA: Neighbourhood density effects are apparent for early and late AoA words, but not for intermediate AoA, whereas imageability effects are apparent for intermediate AoA words but not for early or late AoA. These results are discussed from the perspective that AoA affects a word's representation, but frequency affects processing biases.
Resumo:
Frequency recognition is an important task in many engineering fields such as audio signal processing and telecommunications engineering, for example in applications like Dual-Tone Multi-Frequency (DTMF) detection or the recognition of the carrier frequency of a Global Positioning, System (GPS) signal. This paper will present results of investigations on several common Fourier Transform-based frequency recognition algorithms implemented in real time on a Texas Instruments (TI) TMS320C6713 Digital Signal Processor (DSP) core. In addition, suitable metrics are going to be evaluated in order to ascertain which of these selected algorithms is appropriate for audio signal processing(1).